Suppr超能文献

通过聚(富马酸单乙二醇酯)水凝胶向横断脊髓持续递送二丁酰环腺苷单磷酸。

Sustained delivery of dibutyryl cyclic adenosine monophosphate to the transected spinal cord via oligo [(polyethylene glycol) fumarate] hydrogels.

机构信息

Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.

出版信息

Tissue Eng Part A. 2011 May;17(9-10):1287-302. doi: 10.1089/ten.TEA.2010.0396. Epub 2011 Feb 5.

Abstract

This study describes the use of oligo [(polyethylene glycol) fumarate] (OPF) hydrogel scaffolds as vehicles for sustained delivery of dibutyryl cyclic adenosine monophosphate (dbcAMP) to the transected spinal cord. dbcAMP was encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres, which were embedded within the scaffolds architecture. Functionality of the released dbcAMP was assessed using neurite outgrowth assays in PC12 cells and by delivery to the transected spinal cord within OPF seven channel scaffolds, which had been loaded with Schwann cells or mesenchymal stem cells (MSCs). Our results showed that encapsulation of dbcAMP in microspheres lead to prolonged release and continued functionality in vitro. These microspheres were then successfully incorporated into OPF scaffolds and implanted in the transected thoracic spinal cord. Sustained delivery of dbcAMP inhibited axonal regeneration in the presence of Schwann cells but rescued MSC-induced inhibition of axonal regeneration. dbcAMP was also shown to reduce capillary formation in the presence of MSCs, which was coupled with significant functional improvements. Our findings demonstrate the feasibility of incorporating PLGA microsphere technology for spinal cord transection studies. It represents a novel sustained delivery mechanism within the transected spinal cord and provides a platform for potential delivery of other therapeutic agents.

摘要

本研究描述了聚(乙二醇)琥珀酸酯(OPF)水凝胶支架作为二丁酰环腺苷单磷酸(dbcAMP)向横断脊髓持续传递的载体的用途。dbcAMP 被包裹在聚(乳酸-共-羟基乙酸)(PLGA)微球中,这些微球嵌入在支架结构中。通过 PC12 细胞的神经突生长测定和在负载施万细胞或间充质干细胞(MSCs)的 OPF 七通道支架中递送至横断脊髓,评估释放的 dbcAMP 的功能。我们的结果表明,dbcAMP 微球包封导致体外持续释放和持续功能。然后将这些微球成功地掺入 OPF 支架中,并植入横断的胸段脊髓中。dbcAMP 的持续递送抑制了 Schwann 细胞存在下的轴突再生,但挽救了 MSC 诱导的轴突再生抑制。dbcAMP 还显示在存在 MSCs 的情况下减少了毛细血管形成,这与显著的功能改善相关。我们的研究结果证明了将 PLGA 微球技术纳入脊髓横断研究的可行性。它代表了横断脊髓内的一种新的持续传递机制,并为其他治疗剂的潜在传递提供了一个平台。

相似文献

4
Combinatorial tissue engineering partially restores function after spinal cord injury.
J Tissue Eng Regen Med. 2019 May;13(5):857-873. doi: 10.1002/term.2840. Epub 2019 Mar 20.
6
Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair.
Biomaterials. 2011 Nov;32(32):8077-86. doi: 10.1016/j.biomaterials.2011.07.029. Epub 2011 Jul 30.
7
Multiple-channel scaffolds to promote spinal cord axon regeneration.
Biomaterials. 2006 Jan;27(3):419-29. doi: 10.1016/j.biomaterials.2005.07.045. Epub 2005 Aug 31.
9
Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering.
Biomaterials. 2008 Aug;29(22):3245-52. doi: 10.1016/j.biomaterials.2008.04.031. Epub 2008 May 9.

引用本文的文献

2
Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury.
Int J Mol Sci. 2023 Jan 28;24(3):2528. doi: 10.3390/ijms24032528.
3
Multifaceted Roles of cAMP Signaling in the Repair Process of Spinal Cord Injury and Related Combination Treatments.
Front Mol Neurosci. 2022 Feb 23;15:808510. doi: 10.3389/fnmol.2022.808510. eCollection 2022.
6
Promoting Neuronal Outgrowth Using Ridged Scaffolds Coated with Extracellular Matrix Proteins.
Biomedicines. 2021 Apr 27;9(5):479. doi: 10.3390/biomedicines9050479.
7
A multi-channel collagen scaffold loaded with neural stem cells for the repair of spinal cord injury.
Neural Regen Res. 2021 Nov;16(11):2284-2292. doi: 10.4103/1673-5374.310698.
8
Hydrogel-based local drug delivery strategies for spinal cord repair.
Neural Regen Res. 2021 Feb;16(2):247-253. doi: 10.4103/1673-5374.290882.
9
Recent advances in nanotherapeutic strategies for spinal cord injury repair.
Adv Drug Deliv Rev. 2019 Aug;148:38-59. doi: 10.1016/j.addr.2018.12.011. Epub 2018 Dec 22.
10
Biomaterial Scaffolds in Regenerative Therapy of the Central Nervous System.
Biomed Res Int. 2018 Apr 1;2018:7848901. doi: 10.1155/2018/7848901. eCollection 2018.

本文引用的文献

1
In vitro and in vivo release of nerve growth factor from biodegradable poly-lactic-co-glycolic-acid microspheres.
J Biomed Mater Res A. 2010 Dec 15;95(4):1067-73. doi: 10.1002/jbm.a.32900. Epub 2010 Sep 28.
2
Importance of the vasculature in cyst formation after spinal cord injury.
J Neurosurg Spine. 2009 Oct;11(4):432-7. doi: 10.3171/2009.4.SPINE08784.
4
Stimulation of neurite outgrowth using positively charged hydrogels.
Biomaterials. 2009 Aug;30(23-24):3874-81. doi: 10.1016/j.biomaterials.2009.04.018. Epub 2009 May 8.
5
Axon regeneration through scaffold into distal spinal cord after transection.
J Neurotrauma. 2009 Oct;26(10):1759-71. doi: 10.1089/neu.2008-0610.
6
Relationship between scaffold channel diameter and number of regenerating axons in the transected rat spinal cord.
Acta Biomater. 2009 Sep;5(7):2551-9. doi: 10.1016/j.actbio.2009.03.021. Epub 2009 Mar 27.
8
Local and sustained vascular endothelial growth factor delivery for angiogenesis using an injectable system.
Pharm Res. 2009 Jul;26(7):1739-44. doi: 10.1007/s11095-009-9884-4. Epub 2009 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验