Pang I H, Sternweis P C
University of Texas Southwestern Medical Center, Department of Pharmacology, Dallas 75235.
J Biol Chem. 1990 Oct 25;265(30):18707-12.
Novel G protein alpha subunits were purified from rat brain by an affinity matrix containing immobilized beta gamma subunits (Pang, I.-H., and Sternweis, P. C. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 7814-7818). They were unique based on the following criteria. These alpha subunits migrated differently through polyacrylamide gels with an apparent molecular mass of 42 kDa. They did not behave similarly to the other brain G proteins by conventional chromatographic techniques. Antisera raised against a common region of known alpha subunits failed to recognize these 42-kDa polypeptides. Finally, primary sequences of tryptic fragments of these proteins contain regions homologous to, yet unique from, the other alpha subunits. Sequences are identical with one or more members of a new family of alpha subunits recently identified by molecular genetic techniques (Strathmann, M., Wilke, T. M., and Simon, M. I. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 7407-7409); most of the primary sequence identifies an alpha subunit labeled alpha q. These polypeptides were not substrates for ADP-ribosylation catalyzed by pertussis toxin. They bound GTP gamma S only with slow rates and low stoichiometry. Antisera to peptides based on primary sequence were specific for the new alpha subunits and indicate that they are widely distributed at low levels in different tissues but more concentrated in brain and lung. This procedure provides a means of preparing native G proteins that have a potential role as modulators of pertussis toxin-insensitive regulatory pathways.