Azeloglu Evren U, Hardy Simon V, Eungdamrong Narat John, Chen Yibang, Jayaraman Gomathi, Chuang Peter Y, Fang Wei, Xiong Huabao, Neves Susana R, Jain Mohit R, Li Hong, Ma'ayan Avi, Gordon Ronald E, He John Cijiang, Iyengar Ravi
1Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA.
Sci Signal. 2014 Feb 4;7(311):ra12. doi: 10.1126/scisignal.2004621.
Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease.
足细胞是具有特殊形态的肾细胞,这种形态是肾小球滤过所必需的。诸如糖尿病等疾病,或导致足细胞足突形态破坏的药物暴露,都会引发肾脏病理生理变化。对从嘌呤霉素诱导的肾病大鼠和对照大鼠分离出的肾小球进行蛋白质组学分析表明,由3',5'-环磷酸腺苷(cAMP)激活的蛋白激酶A(PKA)是足细胞形态和功能的关键调节因子。在足细胞中,cAMP信号激活cAMP反应元件结合蛋白(CREB),以增强编码分化标志物突触足蛋白的基因的表达,突触足蛋白是一种与肌动蛋白结合并促进其成束的蛋白质。我们构建并通过实验验证了一个由β-肾上腺素能受体驱动的网络,该网络具有多个反馈和前馈基序,可控制CREB活性。为了确定这些基序如何相互作用以调节基因表达,我们使用Petri网形式将多隔室动力学模型(包括蛋白质亚细胞定位信息)映射到网络拓扑结构上。这些计算分析表明,多个反馈和前馈基序的并列使得突触足蛋白表达和肌动蛋白成束所需的CREB的长期激活成为可能。在患病大鼠中对这些基序进行药物诱导调节可导致体内正常形态和生理功能的恢复。因此,使用网络动力学对调节基序进行分析可以深入了解病理生理学,从而为治疗肾脏疾病的药物干预策略提供预测。