Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America.
PLoS Pathog. 2010 Dec 23;6(12):e1001239. doi: 10.1371/journal.ppat.1001239.
Our ability to control diseases caused by parasitic nematodes is constrained by a limited portfolio of effective drugs and a paucity of robust tools to investigate parasitic nematode biology. RNA interference (RNAi) is a reverse-genetics tool with great potential to identify novel drug targets and interrogate parasite gene function, but present RNAi protocols for parasitic nematodes, which remove the parasite from the host and execute RNAi in vitro, are unreliable and inconsistent. We have established an alternative in vivo RNAi protocol targeting the filarial nematode Brugia malayi as it develops in an intermediate host, the mosquito Aedes aegypti. Injection of worm-derived short interfering RNA (siRNA) and double stranded RNA (dsRNA) into parasitized mosquitoes elicits suppression of B. malayi target gene transcript abundance in a concentration-dependent fashion. The suppression of this gene, a cathepsin L-like cysteine protease (Bm-cpl-1) is specific and profound, both injection of siRNA and dsRNA reduce transcript abundance by 83%. In vivo Bm-cpl-1 suppression results in multiple aberrant phenotypes; worm motility is inhibited by up to 69% and parasites exhibit slow-moving, kinked and partial-paralysis postures. Bm-cpl-1 suppression also retards worm growth by 48%. Bm-cpl-1 suppression ultimately prevents parasite development within the mosquito and effectively abolishes transmission potential because parasites do not migrate to the head and proboscis. Finally, Bm-cpl-1 suppression decreases parasite burden and increases mosquito survival. This is the first demonstration of in vivo RNAi in animal parasitic nematodes and results indicate this protocol is more effective than existing in vitro RNAi methods. The potential of this new protocol to investigate parasitic nematode biology and to identify and validate novel anthelmintic drug targets is discussed.
我们控制由寄生线虫引起的疾病的能力受到有效药物种类有限和缺乏研究寄生虫线虫生物学的强有力工具的限制。RNA 干扰 (RNAi) 是一种具有很大潜力的反向遗传学工具,可以用于鉴定新的药物靶点和研究寄生虫基因功能,但目前针对寄生线虫的 RNAi 方案,需要将寄生虫从宿主中取出并在体外进行 RNAi,这些方案既不可靠也不一致。我们建立了一种替代的体内 RNAi 方案,针对在中间宿主埃及伊蚊中发育的丝虫布氏冈比亚线虫。将源自蠕虫的短干扰 RNA (siRNA) 和双链 RNA (dsRNA) 注射到寄生的蚊子中,会以浓度依赖的方式引发 B. malayi 靶基因转录物丰度的抑制。该基因的抑制是特异性和深刻的,siRNA 和 dsRNA 的注射均使转录物丰度降低 83%。体内 Bm-cpl-1 抑制导致多种异常表型;蠕虫的运动性被抑制高达 69%,寄生虫表现出缓慢移动、扭曲和部分瘫痪的姿势。Bm-cpl-1 抑制还使蠕虫生长减缓 48%。Bm-cpl-1 抑制最终阻止了寄生虫在蚊子体内的发育,并有效地消除了传播潜力,因为寄生虫不会迁移到头和喙部。最后,Bm-cpl-1 抑制降低了寄生虫负担并提高了蚊子的存活率。这是首次在动物寄生线虫中进行体内 RNAi 的演示,结果表明该方案比现有的体外 RNAi 方法更有效。讨论了该新方案在研究寄生虫线虫生物学以及鉴定和验证新型驱虫药靶标的潜力。