Dept. of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA.
Am J Physiol Endocrinol Metab. 2011 Mar;300(3):E600-9. doi: 10.1152/ajpendo.00641.2010. Epub 2011 Jan 4.
Neuronal cell death is an early pathological feature of diabetic retinopathy. We showed previously that insulin receptor signaling is diminished in retinas of animal models of diabetes and that downstream Akt signaling is involved in insulin-mediated retinal neuronal survival. Therefore, further understanding of the mechanisms by which retinal insulin receptor signaling is regulated could have therapeutic implications for neuronal cell death in diabetes. Here, we investigate the role of cholesterol-enriched membrane microdomains to regulate PKC-mediated inhibition of Akt-dependent insulin signaling in R28 retinal neurons. We demonstrate that PKC activation with either a phorbol ester or exogenous application of diacylglycerides impairs insulin-induced Akt activation, whereas PKC inhibition augments insulin-induced Akt activation. To investigate the mechanism by which PKC impairs insulin-stimulated Akt activity, we assessed various upstream mediators of Akt signaling. PKC activation did not alter the tyrosine phosphorylation of the insulin receptor or IRS-2. Additionally, PKC activation did not impair phosphatidylinositol 3-kinase activity, phosphoinositide-dependent kinase phosphorylation, lipid phosphatase (PTEN), or protein phosphatase 2A activities. Thus, we next investigated a biophysical mechanism by which insulin signaling could be disrupted and found that disruption of lipid microdomains via cholesterol depletion blocks insulin-induced Akt activation and reduces insulin receptor tyrosine phosphorylation. We also demonstrated that insulin localizes phosphorylated Akt to lipid microdomains and that PMA reduces phosphorylated Akt. In addition, PMA localizes and recruits PKC isotypes to these cholesterol-enriched microdomains. Taken together, these results demonstrate that both insulin-stimulated Akt signaling and PKC-induced inhibition of Akt signaling depend on cholesterol-enriched membrane microdomains, thus suggesting a putative biophysical mechanism underlying insulin resistance in diabetic retinopathy.
神经元细胞死亡是糖尿病性视网膜病变的早期病理特征。我们之前曾表明,糖尿病动物模型的视网膜中胰岛素受体信号转导减弱,而下游 Akt 信号转导参与了胰岛素介导的视网膜神经元存活。因此,进一步了解视网膜胰岛素受体信号转导的调节机制可能对糖尿病中的神经元细胞死亡具有治疗意义。在这里,我们研究了富含胆固醇的膜微区在调节 PKC 介导的 Akt 依赖性胰岛素信号转导中的作用,以调节 R28 视网膜神经元中的 PKC 介导的 Akt 信号转导。我们证明,使用佛波醇酯或外源性二酰基甘油激活 PKC 会损害胰岛素诱导的 Akt 激活,而 PKC 抑制则增强胰岛素诱导的 Akt 激活。为了研究 PKC 损害胰岛素刺激的 Akt 活性的机制,我们评估了 Akt 信号转导的各种上游介质。PKC 激活不会改变胰岛素受体或 IRS-2 的酪氨酸磷酸化。此外,PKC 激活不会损害磷脂酰肌醇 3-激酶活性、磷酸肌醇依赖性激酶磷酸化、脂质磷酸酶(PTEN)或蛋白磷酸酶 2A 活性。因此,我们接下来研究了一种生物物理机制,通过该机制胰岛素信号可能被破坏,并且发现通过胆固醇耗竭破坏脂质微区会阻止胰岛素诱导的 Akt 激活并减少胰岛素受体酪氨酸磷酸化。我们还证明胰岛素将磷酸化的 Akt 定位到脂质微区,并且 PMA 减少了磷酸化的 Akt。此外,PMA 将 PKC 同工型定位并募集到这些富含胆固醇的微区。总之,这些结果表明,胰岛素刺激的 Akt 信号转导和 PKC 诱导的 Akt 信号转导抑制都依赖于富含胆固醇的膜微区,因此表明糖尿病性视网膜病变中胰岛素抵抗的潜在生物物理机制。