Jala Venkatakrishna R, Haribabu Bodduluri
Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, USA.
J Vis Exp. 2010 Dec 23(46):2315. doi: 10.3791/2315.
G-protein coupled receptors (GPCRs) belong to the seven transmembrane protein family and mediate the transduction of extracellular signals to intracellular responses. GPCRs control diverse biological functions such as chemotaxis, intracellular calcium release, gene regulation in a ligand dependent manner via heterotrimeric G-proteins(1-2). Ligand binding induces a series of conformational changes leading to activation of heterotrimeric G-proteins that modulate levels of second messengers such as cyclic adenosine monophosphate (cAMP), inositol triphosphate (IP3) and diacyl glycerol (DG). Concomitant with activation of the receptor ligand binding also initiates a series of events to attenuate the receptor signaling via desensitization, sequestration and/or internalization. The desensitization process of GPCRs occurs via receptor phosphorylation by G-protein receptor kinases (GRKs) and subsequent binding of β-arrestins(3). β-arrestins are cytosolic proteins and translocate to membrane upon GPCR activation, binding to phosphorylated receptors (most cases) there by facilitating receptor internalization (4-6). Leukotriene B(4;) (LTB(4;)) is a pro-inflammatory lipid molecule derived from arachidonic acid pathway and mediates its actions via GPCRs, LTB(4;) receptor 1 (BLT1; a high affinity receptor) and LTB(4;) receptor 2 (BLT2; a low affinity receptor)(7-9). The LTB(4;)-BLT1 pathway has been shown to be critical in several inflammatory diseases including, asthma, arthritis and atherosclerosis(10-17). The current paper describes the methodologies developed to monitor LTB(4;)-induced leukocyte migration and the interactions of BLT1 with β-arrestin and , receptor translocation in live cells using microscopy imaging techniques(18-19). Bone marrow derived dendritic cells from C57BL/6 mice were isolated and cultured as previously described (20-21). These cells were tested in live cell imaging methods to demonstrate LTB(4;) induced cell migration. The human BLT1 was tagged with red fluorescent protein (BLT1-RFP) at C-terminus and β-arrestin1 tagged with green fluorescent protein (β-arr-GFP) and transfected the both plasmids into Rat Basophilic Leukomia (RBL-2H3) cell lines(18-19). The kinetics of interaction between these proteins and localization were monitored using live cell video microscopy. The methodologies in the current paper describe the use of microscopic techniques to investigate the functional responses of G-protein coupled receptors in live cells. The current paper also describes the use of Metamorph software to quantify the fluorescence intensities to determine the kinetics of receptor and cytosolic protein interactions.
G蛋白偶联受体(GPCRs)属于七跨膜蛋白家族,介导细胞外信号向细胞内反应的转导。GPCRs通过异源三聚体G蛋白以配体依赖的方式控制多种生物学功能,如趋化作用、细胞内钙释放、基因调控(1-2)。配体结合诱导一系列构象变化,导致异源三聚体G蛋白激活,从而调节环磷酸腺苷(cAMP)、肌醇三磷酸(IP3)和二酰甘油(DG)等第二信使的水平。与受体激活同时发生的是,配体结合还会引发一系列事件,通过脱敏、隔离和/或内吞作用来减弱受体信号传导。GPCRs的脱敏过程通过G蛋白受体激酶(GRKs)介导的受体磷酸化以及随后β-抑制蛋白的结合而发生(3)。β-抑制蛋白是胞质蛋白,在GPCR激活后转位至细胞膜,与磷酸化受体结合(大多数情况下),从而促进受体内吞(4-6)。白三烯B4(LTB4)是一种源自花生四烯酸途径的促炎脂质分子,通过GPCRs、LTB4受体1(BLT1;高亲和力受体)和LTB4受体2(BLT2;低亲和力受体)介导其作用(7-9)。LTB4-BLT1途径在包括哮喘、关节炎和动脉粥样硬化在内的多种炎症性疾病中已被证明至关重要(10-17)。本文描述了所开发的方法,用于使用显微镜成像技术监测LTB4诱导的白细胞迁移以及BLT1与β-抑制蛋白的相互作用和活细胞中的受体转位(18-19)。如前所述(20-21),分离并培养了C57BL/6小鼠骨髓来源的树突状细胞。这些细胞在活细胞成像方法中进行测试,以证明LTB4诱导的细胞迁移。人BLT1在C末端用红色荧光蛋白(BLT1-RFP)标记,β-抑制蛋白1用绿色荧光蛋白(β-arr-GFP)标记,并将这两种质粒转染到大鼠嗜碱性白血病(RBL-2H3)细胞系中(18-19)。使用活细胞视频显微镜监测这些蛋白质之间相互作用的动力学和定位。本文中的方法描述了使用显微镜技术研究活细胞中G蛋白偶联受体的功能反应。本文还描述了使用MetaMorph软件量化荧光强度,以确定受体与胞质蛋白相互作用的动力学。