Jala Venkatakrishna R, Shao Wen-Hai, Haribabu Bodduluri
James Graham Brown Cancer Center and The Department of Microbiology & Immunology, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA.
J Biol Chem. 2005 Feb 11;280(6):4880-7. doi: 10.1074/jbc.M409821200. Epub 2004 Nov 23.
Leukotriene B4 (LTB4) activates the G-protein-coupled receptor leukotriene B4 receptor 1 (BLT1) to mediate a diverse array of cellular responses in leukocytes including chemotaxis, calcium mobilization, degranulation, and gene expression. To determine the role of phosphorylation in BLT1 regulation, we generated mutants of BLT1 in which all of the serine/threonine residues in the C-tail are converted to alanine or to aspartate/glutamate. These mutants expressed in rat basophilic leukemia RBL-2H3 cells bound LTB4 with similar affinity and activated all of the known functional activities of BLT1, albeit at different levels. The conversion of phosphorylation sites to alanine resulted in enhanced G-protein-mediated activities, whereas conversion to aspartate/glutamate resulted in reduced responses and a right shift in dose response, indicating that receptor phosphorylation is a critical regulator of G-protein-mediated pathways. Surprisingly, translocation of beta-arrestin and receptor internalization was completely independent of BLT1 phosphorylation. Real-time analysis of beta-arrestin translocation and receptor internalization using digital fluorescence video microscopy in cells expressing a red fluorescent protein labeled BLT1 and a green fluorescent protein-tagged beta-arrestin confirmed phosphorylation-independent beta-arrestin translocation and internalization of BLT1. In beta-arrestin-deficient mouse embryo fibroblasts, the BLT1 receptors failed to display endosomal localization upon stimulation. In these cells, co-expression of beta-arrestin-green fluorescent protein with BLT1-red fluorescent protein resulted in co-localization of BLT1 and beta-arrestin upon activation. Thus, receptor phosphorylation-dependent mechanisms regulate G-protein-mediated pathways; however, phosphorylation-independent mechanisms regulate beta-arrestin association and internalization of BLT1.
白三烯B4(LTB4)激活G蛋白偶联受体白三烯B4受体1(BLT1),以介导白细胞中的多种细胞反应,包括趋化性、钙动员、脱颗粒和基因表达。为了确定磷酸化在BLT1调节中的作用,我们构建了BLT1突变体,其中C末端的所有丝氨酸/苏氨酸残基都被转换为丙氨酸或天冬氨酸/谷氨酸。这些在大鼠嗜碱性白血病RBL-2H3细胞中表达的突变体以相似的亲和力结合LTB4,并激活了BLT1的所有已知功能活性,尽管活性水平不同。将磷酸化位点转换为丙氨酸导致G蛋白介导的活性增强,而转换为天冬氨酸/谷氨酸则导致反应减弱和剂量反应向右偏移,表明受体磷酸化是G蛋白介导途径的关键调节因子。令人惊讶的是,β-抑制蛋白的转位和受体内化完全独立于BLT1磷酸化。使用数字荧光视频显微镜对表达红色荧光蛋白标记的BLT1和绿色荧光蛋白标记的β-抑制蛋白的细胞进行β-抑制蛋白转位和受体内化的实时分析,证实了BLT1的磷酸化非依赖性β-抑制蛋白转位和内化。在β-抑制蛋白缺陷的小鼠胚胎成纤维细胞中,BLT1受体在刺激后未能显示内体定位。在这些细胞中,β-抑制蛋白-绿色荧光蛋白与BLT1-红色荧光蛋白共表达导致激活后BLT1和β-抑制蛋白共定位。因此,受体磷酸化依赖性机制调节G蛋白介导的途径;然而,磷酸化非依赖性机制调节BLT1的β-抑制蛋白结合和内化。