James Franck Institute and Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA.
Acc Chem Res. 2011 Mar 15;44(3):194-203. doi: 10.1021/ar100122w. Epub 2011 Jan 5.
Glassy materials have been fundamental to technology since the dawn of civilization and remain so to this day: novel glassy systems are currently being developed for applications in energy storage, electronics, food, drugs, and more. Glass-forming fluids exhibit a universal set of transitions beginning at temperatures often in excess of twice the glass transition temperature T(g) and extending down to T(g), below which relaxation becomes so slow that systems no longer equilibrate on experimental time scales. Despite the technological importance of glasses, no prior theory explains this universal behavior nor describes the huge variations in the properties of glass-forming fluids that result from differences in molecular structure. Not surprisingly, the glass transition is currently regarded by many as the deepest unsolved problem in solid state theory. In this Account, we describe our recently developed theory of glass formation in polymer fluids. Our theory explains the origin of four universal characteristic temperatures of glass formation and their dependence on monomer-monomer van der Waals energies, conformational energies, and pressure and, perhaps most importantly, on molecular details, such as monomer structure, molecular weight, size of side groups, and so forth. The theory also provides a molecular explanation for fragility, a parameter that quantifies the rate of change with temperature of the viscosity and other dynamic mechanical properties at T(g). The fragility reflects the fluid's thermal sensitivity and determines the manner in which glass-formers can be processed, such as by extrusion, casting, or inkjet spotting. Specifically, the theory describes the change in thermodynamic properties and fragility of polymer glasses with variations in the monomer structure, the rigidity of the backbone and side groups, the cohesive energy, and so forth. The dependence of the structural relaxation time at lower temperatures emerges from the theory as the Vogel-Fulcher equation, whereas pressure and concentration analogs of the Vogel-Fulcher expression follow naturally from the theory with no additional assumptions. The computed dependence of T(g) and fragility on the length of the side group in poly(α-olefins) agrees quite well with observed trends, demonstrating that the theory can be utilized, for instance, to guide the tailoring of T(g) and the fragility of glass-forming polymer fluids in the fabrication of new materials. Our calculations also elucidate the molecular characteristics of small-molecule diluents that promote antiplasticization, a lowering of T(g) and a toughening of the material.
玻璃材料自文明起源以来一直是技术的基础,至今仍是如此:目前正在开发新型玻璃系统,用于储能、电子、食品、药物等应用。玻璃形成流体表现出一套普遍的转变,从通常超过玻璃化转变温度 T(g)两倍的温度开始,延伸到 T(g)以下,在这个温度以下,弛豫变得非常缓慢,以至于系统在实验时间尺度上不再达到平衡。尽管玻璃具有重要的技术意义,但没有先前的理论可以解释这种普遍行为,也无法描述玻璃形成流体的巨大性质变化,这些变化源于分子结构的差异。毫不奇怪,玻璃转变目前被许多人视为固态理论中最深奥的未解决问题。在本报告中,我们描述了我们最近开发的聚合物流体玻璃形成理论。我们的理论解释了玻璃形成的四个普遍特征温度的起源及其对单体-单体范德华能、构象能和压力的依赖性,也许最重要的是,对分子细节的依赖性,如单体结构、分子量、侧基大小等。该理论还为脆性提供了分子解释,脆性是一个参数,它量化了在 T(g)处粘度和其他动态力学性质随温度的变化率。脆性反映了流体的热敏感性,并决定了玻璃形成剂的加工方式,例如挤出、铸造或喷墨点印。具体而言,该理论描述了随着单体结构、主链和侧基的刚性、内聚能等的变化,聚合物玻璃的热力学性质和脆性的变化。理论中,较低温度下结构弛豫时间的依赖性表现为 Vogel-Fulcher 方程,而压力和浓度对 Vogel-Fulcher 表达式的类似物则自然来自该理论,无需额外假设。在聚(α-烯烃)中,侧基长度对 T(g)和脆性的依赖性的计算结果与观察到的趋势非常吻合,这表明该理论可用于指导新型材料制造中玻璃形成聚合物流体的 T(g)和脆性的定制。我们的计算还阐明了促进抗塑性化的小分子稀释剂的分子特征,抗塑性化会降低 T(g)并使材料增韧。