Dept. of Cellular and Molecular Physiology, Howard Hughes Medical Institute, Yale Univ. School of Medicine, New Haven, CT 06520, USA.
Am J Physiol Renal Physiol. 2011 Apr;300(4):F840-7. doi: 10.1152/ajprenal.00552.2010. Epub 2011 Jan 5.
The Na-K-Cl cotransporter (NKCC2) is the major salt transport pathway in the thick ascending limb of Henle's loop and is part of the molecular mechanism for blood pressure regulation. Recent screening of ∼3,000 members of the Framingham Heart Study identified nine rare independent mutations in the gene encoding NKCC2 (SLC12A1) associated with clinically reduced blood pressure and protection from hypertension (Ji WZ, Foo JN, O'Roak BJ, Zhao H, Larson MG, Simon DB, Newton-Cheh C, State M, Levy D, Lifton RP. Nat Genet 40: 592-599, 2008). To investigate their functional consequences, we introduced the nine mutations in human NKCC2A and examined protein function, expression, localization, regulation, and ion transport kinetics using heterologous expression in Xenopus laevis oocytes and HEK-293 cells. When expressed in oocytes, four of the mutants (T235M, R302W, L505V, and P569H) exhibited reduced transport function compared with wild-type. In HEK-293 cells, the same four mutants exhibited reduced function, and in addition N399S and P1083A had significantly lower activity than wild-type. The two most functionally impaired mutants (R302W and L505V) exhibited dramatically diminished production of complex-glycosylated protein and a decrease in or absence of plasma membrane localization, indicative of a processing defect. All of the functional human (h) NKCC2A variants were regulated by changes in oocyte volume and intracellular chloride in HEK cells, but P254A and N399S exhibited a lower constitutive activity in HEK cells. The P569H mutant exhibited a 50% reduction in sodium affinity compared with wild-type, predicting lower transport activity at lower intratubular salt concentrations, while the P254A mutant exhibited a 35% increase in rubidium affinity. We conclude that defects in NKCC2 processing, transport turnover rate, regulation, and ion affinity contribute to impaired transport function in six of the nine identified mutants, providing support for the predictive approach of Ji et al. to identify functionally important residues by sequence conservation. Such mutations in hNKCC2A are likely to reduce renal salt reabsorption, providing a mechanism for lower blood pressure.
钠-钾-2 氯协同转运蛋白(NKCC2)是亨利氏袢升支粗段的主要盐转运途径,也是血压调节的分子机制的一部分。最近对弗雷明汉心脏研究中的约 3000 名成员进行的筛选发现,编码 NKCC2(SLC12A1)的基因中有 9 个罕见的独立突变与临床血压降低和高血压保护相关(Ji WZ、Foo JN、O'Roak BJ、Zhao H、Larson MG、Simon DB、Newton-Cheh C、State M、Levy D、Lifton RP。Nat Genet 40: 592-599, 2008)。为了研究它们的功能后果,我们在人类 NKCC2A 中引入了这 9 个突变,并使用 Xenopus laevis 卵母细胞和 HEK-293 细胞中的异源表达来检查蛋白质功能、表达、定位、调节和离子转运动力学。当在卵母细胞中表达时,四个突变体(T235M、R302W、L505V 和 P569H)与野生型相比表现出降低的转运功能。在 HEK-293 细胞中,同样的四个突变体表现出降低的功能,此外 N399S 和 P1083A 的活性明显低于野生型。两个功能受损最严重的突变体(R302W 和 L505V)表现出复杂糖基化蛋白的产量显著降低,并且质膜定位减少或缺失,表明存在加工缺陷。所有功能性人类(h)NKCC2A 变体在 HEK 细胞中均受卵母细胞体积和细胞内氯离子变化的调节,但 P254A 和 N399S 在 HEK 细胞中表现出较低的组成活性。与野生型相比,P569H 突变体的钠离子亲和力降低了 50%,这表明在较低的管内盐浓度下,转运活性降低,而 P254A 突变体的铷离子亲和力增加了 35%。我们得出结论,NKCC2 加工、转运周转率、调节和离子亲和力的缺陷导致六个鉴定的突变体中的转运功能受损,这为 Ji 等人通过序列保守性来识别具有重要功能的残基的预测方法提供了支持。hNKCC2A 中的此类突变可能会减少肾脏盐的重吸收,为降低血压提供一种机制。