Suppr超能文献

针对细胞受体结合域的单域抗体中和艰难梭菌毒素 A。

Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain.

机构信息

Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada.

出版信息

J Biol Chem. 2011 Mar 18;286(11):8961-76. doi: 10.1074/jbc.M110.198754. Epub 2011 Jan 7.

Abstract

Clostridium difficile is a leading cause of nosocomial infection in North America and a considerable challenge to healthcare professionals in hospitals and nursing homes. The gram-positive bacterium produces two high molecular weight exotoxins, toxin A (TcdA) and toxin B (TcdB), which are the major virulence factors responsible for C. difficile-associated disease and are targets for C. difficile-associated disease therapy. Here, recombinant single-domain antibody fragments (V(H)Hs), which specifically target the cell receptor binding domains of TcdA or TcdB, were isolated from an immune llama phage display library and characterized. Four V(H)Hs (A4.2, A5.1, A20.1, and A26.8), all shown to recognize conformational epitopes, were potent neutralizers of the cytopathic effects of toxin A on fibroblast cells in an in vitro assay. The neutralizing potency was further enhanced when V(H)Hs were administered in paired or triplet combinations at the same overall V(H)H concentration, suggesting recognition of nonoverlapping TcdA epitopes. Biacore epitope mapping experiments revealed that some synergistic combinations consisted of V(H)Hs recognizing overlapping epitopes, an indication that factors other than mere epitope blocking are responsible for the increased neutralization. Further binding assays revealed TcdA-specific V(H)Hs neutralized toxin A by binding to sites other than the carbohydrate binding pocket of the toxin. With favorable characteristics such as high production yield, potent toxin neutralization, and intrinsic stability, these V(H)Hs are attractive systemic therapeutics but are more so as oral therapeutics in the destabilizing environment of the gastrointestinal tract.

摘要

艰难梭菌是北美医院感染的主要原因,也是医院和疗养院医护人员面临的重大挑战。这种革兰氏阳性细菌产生两种高分子量外毒素,即毒素 A(TcdA)和毒素 B(TcdB),它们是导致艰难梭菌相关性疾病的主要毒力因子,也是艰难梭菌相关性疾病治疗的靶点。在这里,从免疫骆驼噬菌体展示文库中分离出了特异性靶向 TcdA 或 TcdB 细胞受体结合域的重组单域抗体片段(V(H)Hs),并对其进行了表征。四个 V(H)Hs(A4.2、A5.1、A20.1 和 A26.8)均被证明能识别构象表位,在体外实验中能有效中和毒素 A 对成纤维细胞的细胞病变效应。当 V(H)Hs 在相同的总 V(H)H 浓度下以配对或三联体组合给药时,中和效力进一步增强,这表明它们识别非重叠的 TcdA 表位。Biacore 表位作图实验表明,一些协同组合由识别重叠表位的 V(H)Hs 组成,这表明除了单纯的表位阻断外,还有其他因素导致中和作用增强。进一步的结合实验表明,TcdA 特异性 V(H)Hs 通过结合毒素的非碳水化合物结合口袋以外的部位来中和毒素 A。由于具有高产量、高效中和毒素和固有稳定性等优良特性,这些 V(H)Hs 不仅是很有吸引力的系统性治疗药物,而且在胃肠道不稳定的环境下作为口服治疗药物更具优势。

相似文献

1
Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain.
J Biol Chem. 2011 Mar 18;286(11):8961-76. doi: 10.1074/jbc.M110.198754. Epub 2011 Jan 7.
2
Structural basis for antibody recognition in the receptor-binding domains of toxins A and B from Clostridium difficile.
J Biol Chem. 2014 Jan 24;289(4):2331-43. doi: 10.1074/jbc.M113.505917. Epub 2013 Dec 5.
3
Mechanism of action and epitopes of Clostridium difficile toxin B-neutralizing antibody bezlotoxumab revealed by X-ray crystallography.
J Biol Chem. 2014 Jun 27;289(26):18008-21. doi: 10.1074/jbc.M114.560748. Epub 2014 May 12.
4
Neutralization of Clostridium difficile Toxin B Mediated by Engineered Lactobacilli That Produce Single-Domain Antibodies.
Infect Immun. 2015 Nov 16;84(2):395-406. doi: 10.1128/IAI.00870-15. Print 2016 Feb.
5
Toxin-specific antibodies for the treatment of Clostridium difficile: current status and future perspectives.
Toxins (Basel). 2010 May;2(5):998-1018. doi: 10.3390/toxins2050998. Epub 2010 May 7.
6
A novel multivalent, single-domain antibody targeting TcdA and TcdB prevents fulminant Clostridium difficile infection in mice.
J Infect Dis. 2014 Sep 15;210(6):964-72. doi: 10.1093/infdis/jiu196. Epub 2014 Mar 27.
7
Clostridium difficile 027/BI/NAP1 encodes a hypertoxic and antigenically variable form of TcdB.
PLoS Pathog. 2013;9(8):e1003523. doi: 10.1371/journal.ppat.1003523. Epub 2013 Aug 1.
8
A chimeric toxin vaccine protects against primary and recurrent Clostridium difficile infection.
Infect Immun. 2012 Aug;80(8):2678-88. doi: 10.1128/IAI.00215-12. Epub 2012 May 21.
9
Protective efficacy induced by recombinant Clostridium difficile toxin fragments.
Infect Immun. 2013 Aug;81(8):2851-60. doi: 10.1128/IAI.01341-12. Epub 2013 May 28.

引用本文的文献

2
Small but Mighty: Nanobodies in the Fight Against Infectious Diseases.
Biomolecules. 2025 Apr 23;15(5):610. doi: 10.3390/biom15050610.
5
A molecular toolkit for heterologous protein secretion across Bacteroides species.
Nat Commun. 2024 Nov 11;15(1):9741. doi: 10.1038/s41467-024-53845-7.
6
Scalable, robust, high-throughput expression & purification of nanobodies enabled by 2-stage dynamic control.
Metab Eng. 2024 Sep;85:116-130. doi: 10.1016/j.ymben.2024.07.012. Epub 2024 Jul 24.
8
Exploring the Toxin-Mediated Mechanisms in Infection.
Microorganisms. 2024 May 16;12(5):1004. doi: 10.3390/microorganisms12051004.
9
Discovery and preclinical development of a therapeutically active nanobody-based chimeric antigen receptor targeting human CD22.
Mol Ther Oncol. 2024 Feb 13;32(1):200775. doi: 10.1016/j.omton.2024.200775. eCollection 2024 Mar 21.
10
New treatment approaches for infections: alternatives to antibiotics and fecal microbiota transplantation.
Gut Microbes. 2024 Jan-Dec;16(1):2337312. doi: 10.1080/19490976.2024.2337312. Epub 2024 Apr 9.

本文引用的文献

1
Multivalent anchoring and oriented display of single-domain antibodies on cellulose.
Sensors (Basel). 2009;9(7):5351-67. doi: 10.3390/s90705351. Epub 2009 Jul 7.
2
Toxin-specific antibodies for the treatment of Clostridium difficile: current status and future perspectives.
Toxins (Basel). 2010 May;2(5):998-1018. doi: 10.3390/toxins2050998. Epub 2010 May 7.
3
The role of toxin A and toxin B in Clostridium difficile infection.
Nature. 2010 Oct 7;467(7316):711-3. doi: 10.1038/nature09397. Epub 2010 Sep 15.
4
Structural organization of the functional domains of Clostridium difficile toxins A and B.
Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13467-72. doi: 10.1073/pnas.1002199107. Epub 2010 Jul 12.
5
A bispecific nanobody to provide full protection against lethal scorpion envenoming.
FASEB J. 2010 Sep;24(9):3479-89. doi: 10.1096/fj.09-148213. Epub 2010 Apr 21.
6
Neutralization of Clostridium difficile toxin A using antibody combinations.
MAbs. 2010 Mar-Apr;2(2):190-8. doi: 10.4161/mabs.2.2.11220.
7
Treatment with monoclonal antibodies against Clostridium difficile toxins.
N Engl J Med. 2010 Jan 21;362(3):197-205. doi: 10.1056/NEJMoa0907635.
8
High-level expression of Camelid nanobodies in Nicotiana benthamiana.
Transgenic Res. 2010 Aug;19(4):575-86. doi: 10.1007/s11248-009-9338-0. Epub 2009 Oct 28.
9
Single domain antibodies: promising experimental and therapeutic tools in infection and immunity.
Med Microbiol Immunol. 2009 Aug;198(3):157-74. doi: 10.1007/s00430-009-0116-7. Epub 2009 Jun 16.
10
Clostridium difficile infection: new developments in epidemiology and pathogenesis.
Nat Rev Microbiol. 2009 Jul;7(7):526-36. doi: 10.1038/nrmicro2164.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验