Suppr超能文献

低水平α-肌球蛋白重链表达对猪心肌收缩动力学的影响。

Effects of low-level α-myosin heavy chain expression on contractile kinetics in porcine myocardium.

机构信息

1Department of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53711, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2011 Mar;300(3):H869-78. doi: 10.1152/ajpheart.00452.2010. Epub 2011 Jan 7.

Abstract

Myosin heavy chain (MHC) isoforms are principal determinants of work capacity in mammalian ventricular myocardium. The ventricles of large mammals including humans normally express ∼10% α-MHC on a predominantly β-MHC background, while in failing human ventricles α-MHC is virtually eliminated, suggesting that low-level α-MHC expression in normal myocardium can accelerate the kinetics of contraction and augment systolic function. To test this hypothesis in a model similar to human myocardium we determined composite rate constants of cross-bridge attachment (f(app)) and detachment (g(app)) in porcine myocardium expressing either 100% α-MHC or 100% β-MHC in order to predict the MHC isoform-specific effect on twitch kinetics. Right atrial (∼100% α-MHC) and left ventricular (∼100% β-MHC) tissue was used to measure myosin ATPase activity, isometric force, and the rate constant of force redevelopment (k(tr)) in solutions of varying Ca(2+) concentration. The rate of ATP utilization and k(tr) were approximately ninefold higher in atrial compared with ventricular myocardium, while tension cost was approximately eightfold greater in atrial myocardium. From these values, we calculated f(app) to be ∼10-fold higher in α- compared with β-MHC, while g(app) was 8-fold higher in α-MHC. Mathematical modeling of an isometric twitch using these rate constants predicts that the expression of 10% α-MHC increases the maximal rate of rise of force (dF/dt(max)) by 92% compared with 0% α-MHC. These results suggest that low-level expression of α-MHC significantly accelerates myocardial twitch kinetics, thereby enhancing systolic function in large mammalian myocardium.

摘要

肌球蛋白重链(MHC)同工型是哺乳动物心室心肌做功能力的主要决定因素。包括人类在内的大型哺乳动物的心室通常以β-MHC 为主,表达约 10%的α-MHC,而在衰竭的人类心室中,α-MHC 几乎被消除,这表明正常心肌中低水平的α-MHC 表达可以加速收缩动力学并增强收缩功能。为了在类似于人类心肌的模型中检验这一假设,我们测定了表达 100%α-MHC 或 100%β-MHC 的猪心肌的横桥附着(f(app))和脱离(g(app))的复合速率常数,以预测 MHC 同工型对抽搐动力学的特异性影响。使用右心房(约 100%α-MHC)和左心室(约 100%β-MHC)组织来测量肌球蛋白 ATP 酶活性、等长力和力再发展速率常数(k(tr)),以测量不同 Ca(2+)浓度溶液中的力。与心室心肌相比,心房心肌的 ATP 利用率和 k(tr)大约高九倍,而心房心肌的张力成本大约高八倍。从这些值中,我们计算出 f(app)在α-MHC 中比在β-MHC 中大约高 10 倍,而 g(app)在α-MHC 中高 8 倍。使用这些速率常数对等长抽搐进行数学建模预测,表达 10%的α-MHC 会使力的最大上升速率(dF/dt(max))增加 92%,而 0%的α-MHC 则不会。这些结果表明,低水平的α-MHC 表达可显著加速心肌抽搐动力学,从而增强大型哺乳动物心肌的收缩功能。

相似文献

1
Effects of low-level α-myosin heavy chain expression on contractile kinetics in porcine myocardium.
Am J Physiol Heart Circ Physiol. 2011 Mar;300(3):H869-78. doi: 10.1152/ajpheart.00452.2010. Epub 2011 Jan 7.
2
Determination of rate constants for turnover of myosin isoforms in rat myocardium: implications for in vivo contractile kinetics.
Am J Physiol Heart Circ Physiol. 2009 Jul;297(1):H247-56. doi: 10.1152/ajpheart.00922.2008. Epub 2009 Apr 24.
4
Impact of beta-myosin heavy chain isoform expression on cross-bridge cycling kinetics.
Am J Physiol Heart Circ Physiol. 2005 Feb;288(2):H896-903. doi: 10.1152/ajpheart.00407.2004. Epub 2004 Oct 7.
5
Role of myosin heavy chain composition in the stretch activation response of rat myocardium.
J Physiol. 2007 Feb 15;579(Pt 1):161-73. doi: 10.1113/jphysiol.2006.119719. Epub 2006 Nov 30.
6
Length-dependent effects on cardiac contractile dynamics are different in cardiac muscle containing α- or β-myosin heavy chain.
Arch Biochem Biophys. 2013 Jul 1;535(1):3-13. doi: 10.1016/j.abb.2012.10.011. Epub 2012 Oct 27.
7
Regulatory light chain phosphorylation augments length-dependent contraction in PTU-treated rats.
J Gen Physiol. 2019 Jan 7;151(1):66-76. doi: 10.1085/jgp.201812158. Epub 2018 Dec 6.
8
Developmental increase in β-MHC enhances sarcomere length-dependent activation in the myocardium.
J Gen Physiol. 2019 May 6;151(5):635-644. doi: 10.1085/jgp.201812183. Epub 2019 Jan 2.
9
Myocardial contraction is 5-fold more economical in ventricular than in atrial human tissue.
Cardiovasc Res. 2005 Jan 1;65(1):221-9. doi: 10.1016/j.cardiores.2004.09.029.
10
Impact of beta-myosin heavy chain expression on cardiac function during stress.
J Am Coll Cardiol. 2004 Dec 21;44(12):2390-7. doi: 10.1016/j.jacc.2004.09.044.

引用本文的文献

1
A gene regulatory element modulates myosin expression and controls cardiomyocyte response to stress.
bioRxiv. 2025 Jul 20:2025.07.19.665672. doi: 10.1101/2025.07.19.665672.
3
Modeling the effects of thin filament near-neighbor cooperative interactions in mammalian myocardium.
J Gen Physiol. 2025 Mar 3;157(2). doi: 10.1085/jgp.202413582. Epub 2025 Jan 27.
4
Analysis of age-related changes in the left ventricular myocardium with multiphoton microscopy.
Biomed Opt Express. 2024 Apr 23;15(5):3251-3264. doi: 10.1364/BOE.509227. eCollection 2024 May 1.
5
Cooperative mechanisms underlie differences in myocardial contractile dynamics between large and small mammals.
J Gen Physiol. 2023 Nov 6;155(11). doi: 10.1085/jgp.202213315. Epub 2023 Sep 19.
6
Depressed myocardial cross-bridge cycling kinetics in a female guinea pig model of diastolic heart failure.
J Gen Physiol. 2023 Jun 5;155(6). doi: 10.1085/jgp.202213288. Epub 2023 Apr 27.
7
Modeling sepsis, with a special focus on large animal models of porcine peritonitis and bacteremia.
Front Physiol. 2023 Jan 10;13:1094199. doi: 10.3389/fphys.2022.1094199. eCollection 2022.
9
Effect of Myosin Isoforms on Cardiac Muscle Twitch of Mice, Rats and Humans.
Int J Mol Sci. 2022 Jan 20;23(3):1135. doi: 10.3390/ijms23031135.
10

本文引用的文献

2
Determination of rate constants for turnover of myosin isoforms in rat myocardium: implications for in vivo contractile kinetics.
Am J Physiol Heart Circ Physiol. 2009 Jul;297(1):H247-56. doi: 10.1152/ajpheart.00922.2008. Epub 2009 Apr 24.
4
Role of myosin heavy chain composition in the stretch activation response of rat myocardium.
J Physiol. 2007 Feb 15;579(Pt 1):161-73. doi: 10.1113/jphysiol.2006.119719. Epub 2006 Nov 30.
5
Left ventricular structure and function: basic science for cardiac imaging.
J Am Coll Cardiol. 2006 Nov 21;48(10):1988-2001. doi: 10.1016/j.jacc.2006.08.030. Epub 2006 Oct 31.
6
Selected physiologic compatibilities and incompatibilities between human and porcine organ systems.
Xenotransplantation. 2006 Nov;13(6):488-99. doi: 10.1111/j.1399-3089.2006.00346.x.
7
MRI myocardial motion and fiber tracking: a confirmation of knowledge from different imaging modalities.
Eur J Cardiothorac Surg. 2006 Apr;29 Suppl 1:S165-77. doi: 10.1016/j.ejcts.2006.02.064. Epub 2006 Mar 29.
8
Beta-myosin heavy chain myocytes are more resistant to changes in power output induced by ischemic conditions.
Am J Physiol Heart Circ Physiol. 2006 Feb;290(2):H869-77. doi: 10.1152/ajpheart.00221.2005. Epub 2005 Sep 19.
9
Alpha-myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy.
Circulation. 2005 Jul 5;112(1):54-9. doi: 10.1161/CIRCULATIONAHA.104.507699.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验