1Department of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53711, USA.
Am J Physiol Heart Circ Physiol. 2011 Mar;300(3):H869-78. doi: 10.1152/ajpheart.00452.2010. Epub 2011 Jan 7.
Myosin heavy chain (MHC) isoforms are principal determinants of work capacity in mammalian ventricular myocardium. The ventricles of large mammals including humans normally express ∼10% α-MHC on a predominantly β-MHC background, while in failing human ventricles α-MHC is virtually eliminated, suggesting that low-level α-MHC expression in normal myocardium can accelerate the kinetics of contraction and augment systolic function. To test this hypothesis in a model similar to human myocardium we determined composite rate constants of cross-bridge attachment (f(app)) and detachment (g(app)) in porcine myocardium expressing either 100% α-MHC or 100% β-MHC in order to predict the MHC isoform-specific effect on twitch kinetics. Right atrial (∼100% α-MHC) and left ventricular (∼100% β-MHC) tissue was used to measure myosin ATPase activity, isometric force, and the rate constant of force redevelopment (k(tr)) in solutions of varying Ca(2+) concentration. The rate of ATP utilization and k(tr) were approximately ninefold higher in atrial compared with ventricular myocardium, while tension cost was approximately eightfold greater in atrial myocardium. From these values, we calculated f(app) to be ∼10-fold higher in α- compared with β-MHC, while g(app) was 8-fold higher in α-MHC. Mathematical modeling of an isometric twitch using these rate constants predicts that the expression of 10% α-MHC increases the maximal rate of rise of force (dF/dt(max)) by 92% compared with 0% α-MHC. These results suggest that low-level expression of α-MHC significantly accelerates myocardial twitch kinetics, thereby enhancing systolic function in large mammalian myocardium.
肌球蛋白重链(MHC)同工型是哺乳动物心室心肌做功能力的主要决定因素。包括人类在内的大型哺乳动物的心室通常以β-MHC 为主,表达约 10%的α-MHC,而在衰竭的人类心室中,α-MHC 几乎被消除,这表明正常心肌中低水平的α-MHC 表达可以加速收缩动力学并增强收缩功能。为了在类似于人类心肌的模型中检验这一假设,我们测定了表达 100%α-MHC 或 100%β-MHC 的猪心肌的横桥附着(f(app))和脱离(g(app))的复合速率常数,以预测 MHC 同工型对抽搐动力学的特异性影响。使用右心房(约 100%α-MHC)和左心室(约 100%β-MHC)组织来测量肌球蛋白 ATP 酶活性、等长力和力再发展速率常数(k(tr)),以测量不同 Ca(2+)浓度溶液中的力。与心室心肌相比,心房心肌的 ATP 利用率和 k(tr)大约高九倍,而心房心肌的张力成本大约高八倍。从这些值中,我们计算出 f(app)在α-MHC 中比在β-MHC 中大约高 10 倍,而 g(app)在α-MHC 中高 8 倍。使用这些速率常数对等长抽搐进行数学建模预测,表达 10%的α-MHC 会使力的最大上升速率(dF/dt(max))增加 92%,而 0%的α-MHC 则不会。这些结果表明,低水平的α-MHC 表达可显著加速心肌抽搐动力学,从而增强大型哺乳动物心肌的收缩功能。