Buckberg Gerald D, Mahajan Aman, Jung Bernd, Markl Michael, Hennig Juergen, Ballester-Rodes Manel
Option on Bioengineering, California Institute of Technology, Pasadena, CA, USA.
Eur J Cardiothorac Surg. 2006 Apr;29 Suppl 1:S165-77. doi: 10.1016/j.ejcts.2006.02.064. Epub 2006 Mar 29.
A helical configuration underlies the anatomy of cardiac structure, and a structure/function relationship is needed to determine if the ventricular myocardial band model defines this spatial relationship. This report explores how studies of velocity-encoded phase contrast magnetic resonance imaging (MRI) for myocardial motion and fiber tracking algorithms that imply fiber orientations can (a) quantify regional myocardial wall motion of the entire heart, (b) determine if these motion of implied fiber orientation link with the helical heart model, and (c) reveal if this new knowledge correlates with imaging information from other different imaging modalities.
Accumulated left ventricular motion patterns that accurately differentiate radial (i.e. contraction and expansion), rotational (i.e. twisting and untwisting), and longitudinal (i.e. lengthening and shortening) motion components are correlated with structure/function data achieved by sonomicrometer crystals, echocardiography, corrosion casts, and MUGA recordings.
Acceleration fiber tracking to determine fiber orientation and cardiac motion during the ejection and rapid filling phases of the cardiac cycle corresponded to maximal force displayed by ultrasonic crystals placed into the angulation of the presumed functional units of the descending and ascending segments of the apical loop of the helical ventricular myocardial band, and motion by echocardiographic recordings. These integrated findings imply a favourable interaction of MRI with the myocyte orientation of the helical ventricular myocardial band.
These composite findings indicate that phase contrast MRI techniques for high temporal resolution velocity mapping during cardiac motion and myocardial fiber tracking confirm other technologies, and centralize the capacity of MRI to link other imaging methods together relative to a single helical structural model. The close agreement amongst a spectrum of imaging studies provide a very powerful integration that transcends a single look; the same thing is observed by each component of global technology, thereby implying that the helical ventricular band is the structural basis for these functional changes.
心脏结构的解剖学基础是螺旋构型,需要一种结构/功能关系来确定心室心肌带模型是否定义了这种空间关系。本报告探讨了用于心肌运动的速度编码相位对比磁共振成像(MRI)研究以及暗示纤维方向的纤维追踪算法如何能够:(a)量化整个心脏的区域心肌壁运动;(b)确定这些暗示纤维方向的运动是否与螺旋心脏模型相关联;(c)揭示这一新知识是否与来自其他不同成像模态的成像信息相关。
准确区分径向(即收缩和扩张)、旋转(即扭转和松开)和纵向(即伸长和缩短)运动分量的累积左心室运动模式,与通过超声晶体、超声心动图、腐蚀铸型和多门电路平衡心血池显像(MUGA)记录获得的结构/功能数据相关联。
在心动周期的射血期和快速充盈期,用于确定纤维方向和心脏运动的加速纤维追踪,与放置在螺旋心室心肌带心尖环降段和升段假定功能单元夹角处的超声晶体所显示的最大力以及超声心动图记录的运动相对应。这些综合发现表明MRI与螺旋心室心肌带的心肌细胞方向存在良好的相互作用。
这些综合发现表明,用于心脏运动期间高时间分辨率速度映射的相位对比MRI技术和心肌纤维追踪技术证实了其他技术,并集中了MRI将其他成像方法相对于单一螺旋结构模型联系在一起的能力。一系列成像研究之间的密切一致性提供了一种超越单一观察的非常强大的整合;全球技术的每个组成部分都观察到了相同的情况,但这意味着螺旋心室带是这些功能变化的结构基础。