Suppr超能文献

纹状体脑片中短电刺激诱发的腺苷释放主要依赖于活动。

Adenosine Release Evoked by Short Electrical Stimulations in Striatal Brain Slices is Primarily Activity Dependent.

作者信息

Pajski Megan L, Venton B Jill

出版信息

ACS Chem Neurosci. 2010 Oct 1;1(12):775-787. doi: 10.1021/cn100037d.

Abstract

Adenosine is an important neuromodulator in the brain. Traditionally, adenosine is thought to arise in the extracellular space by either an extracellular mechanism, where it is formed outside the cell by the breakdown of released ATP, or an intracellular mechanism, where adenosine made inside the cell is transported out. Recently, a proposed third mechanism of activity dependent adenosine release has also been proposed. Here, we used fast-scan cyclic voltammetry to compare the time course and mechanism of adenosine formation evoked by either low- or high-frequency stimulations in striatal rat brain slices. Low-frequency stimulations (5 pulses at 10 Hz) resulted in an average adenosine efflux of 0.22 ± 0.02 μM, while high-frequency stimulations (5 pulses, 60 Hz) evoked 0.36 ± 0.04 μM. Blocking intracellular formation by inhibiting adenosine transporters with S-(4-nitrobenzyl)-6-thioinosine (NBTI) or propentofylline did not decrease release for either frequency, indicating that the release was not due to the intracellular mechanism. Blocking extracellular formation with ARL-67156 reduced low-frequency release about 60%, but did not affect high-frequency release. Both low- and high-frequency stimulated release were almost completely blocked by removal of calcium, indicating activity dependence. Reducing dopamine efflux did not affect adenosine release but inhibiting ionotropic glutamate receptors did, indicating that adenosine release is dependent on downstream effects of glutamate. Therefore, adenosine release after short, high-frequency physiological stimulations is independent of transporter activity or ATP metabolism, and may be due to direct release of adenosine after glutamate receptor activation.

摘要

腺苷是大脑中一种重要的神经调质。传统上,人们认为腺苷在细胞外空间产生的机制有两种,一种是细胞外机制,即细胞外释放的ATP分解形成腺苷;另一种是细胞内机制,即细胞内合成的腺苷被转运到细胞外。最近,还提出了一种与活动相关的腺苷释放的第三种机制。在这里,我们使用快速扫描循环伏安法比较了低频或高频刺激诱发的纹状体大鼠脑片中腺苷形成的时间进程和机制。低频刺激(10Hz,5个脉冲)导致腺苷平均外流为0.22±0.02μM,而高频刺激(60Hz,5个脉冲)诱发的腺苷外流为0.36±0.04μM。用S-(4-硝基苄基)-6-硫代肌苷(NBTI)或丙戊茶碱抑制腺苷转运体来阻断细胞内形成,对于两种频率的刺激,释放量均未减少,这表明释放不是由于细胞内机制。用ARL-67156阻断细胞外形成可使低频释放减少约60%,但不影响高频释放。去除钙离子几乎完全阻断了低频和高频刺激诱发的释放,表明其与活动相关。减少多巴胺外流不影响腺苷释放,但抑制离子型谷氨酸受体则有影响,这表明腺苷释放依赖于谷氨酸的下游效应。因此,短时间高频生理刺激后的腺苷释放与转运体活性或ATP代谢无关,可能是由于谷氨酸受体激活后腺苷的直接释放。

相似文献

4
Regional differences in evoked dopamine efflux in brain slices of rat anterior and posterior caudate putamen.
Naunyn Schmiedebergs Arch Pharmacol. 1992 Sep;346(3):267-76. doi: 10.1007/BF00173539.
6
Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release.
Comput Struct Biotechnol J. 2014 Dec 29;13:47-54. doi: 10.1016/j.csbj.2014.12.006. eCollection 2015.
7
Mechanical stimulation evokes rapid increases in extracellular adenosine concentration in the prefrontal cortex.
J Neurochem. 2014 Jul;130(1):50-60. doi: 10.1111/jnc.12711. Epub 2014 Apr 2.
8
Inhibition of cholinergic neurotransmission by β-adrenoceptors depends on adenosine release and A-receptor activation in human and rat urinary bladders.
Am J Physiol Renal Physiol. 2017 Aug 1;313(2):F388-F403. doi: 10.1152/ajprenal.00392.2016. Epub 2017 Apr 26.
9
Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism.
Pharmacol Res Perspect. 2015 Nov 16;3(6):e00189. doi: 10.1002/prp2.189. eCollection 2015 Dec.

引用本文的文献

2
Disruption of adenosine metabolism increases risk of seizure-induced death despite decreased seizure severity.
Epilepsia. 2024 Sep;65(9):2798-2811. doi: 10.1111/epi.18055. Epub 2024 Jul 17.
3
Carbon nanospikes have improved sensitivity and antifouling properties for adenosine, hydrogen peroxide, and histamine.
Anal Bioanal Chem. 2023 Oct;415(24):6039-6050. doi: 10.1007/s00216-023-04875-5. Epub 2023 Jul 28.
5
Spontaneous Adenosine and Dopamine Cotransmission in the Caudate-Putamen Is Regulated by Adenosine Receptors.
ACS Chem Neurosci. 2021 Dec 1;12(23):4371-4379. doi: 10.1021/acschemneuro.1c00175. Epub 2021 Nov 16.
7
The Good, the Bad, and the Deadly: Adenosinergic Mechanisms Underlying Sudden Unexpected Death in Epilepsy.
Front Neurosci. 2021 Jul 12;15:708304. doi: 10.3389/fnins.2021.708304. eCollection 2021.
8
Polymer Modified Carbon Fiber-Microelectrodes and Waveform Modifications Enhance Neurotransmitter Metabolite Detection.
Anal Methods. 2019 Mar 28;11(12):1620-1630. doi: 10.1039/c8ay02737d. Epub 2019 Feb 19.
9
A and A Receptors Modulate Spontaneous Adenosine but Not Mechanically Stimulated Adenosine in the Caudate.
ACS Chem Neurosci. 2020 Oct 21;11(20):3377-3385. doi: 10.1021/acschemneuro.0c00510. Epub 2020 Oct 7.
10
Structural Similarity Image Analysis for Detection of Adenosine and Dopamine in Fast-Scan Cyclic Voltammetry Color Plots.
Anal Chem. 2020 Aug 4;92(15):10485-10494. doi: 10.1021/acs.analchem.0c01214. Epub 2020 Jul 21.

本文引用的文献

1
Activity-dependent release of adenosine: a critical re-evaluation of mechanism.
Curr Neuropharmacol. 2008 Dec;6(4):329-37. doi: 10.2174/157015908787386087.
2
The role of ATP and adenosine in the brain under normoxic and ischemic conditions.
Purinergic Signal. 2007 Sep;3(4):299-310. doi: 10.1007/s11302-007-9085-8. Epub 2007 Oct 11.
3
Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade.
Biochim Biophys Acta. 2008 May;1783(5):673-94. doi: 10.1016/j.bbamcr.2008.01.024. Epub 2008 Feb 12.
4
Transient adenosine efflux in the rat caudate-putamen.
J Neurochem. 2008 May;105(4):1253-63. doi: 10.1111/j.1471-4159.2008.05223.x. Epub 2008 Jan 10.
6
Purinergic modulation of glutamate release under ischemic-like conditions in the hippocampus.
Neuroscience. 2007 Oct 12;149(1):99-111. doi: 10.1016/j.neuroscience.2007.07.035. Epub 2007 Aug 1.
7
Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus.
J Neurochem. 2007 Jun;101(5):1400-13. doi: 10.1111/j.1471-4159.2006.04425.x.
8
Control of basal extracellular adenosine concentration in rat cerebellum.
J Physiol. 2007 Jul 1;582(Pt 1):137-51. doi: 10.1113/jphysiol.2007.132050. Epub 2007 Apr 19.
9
Auto-inhibition of rat parallel fibre-Purkinje cell synapses by activity-dependent adenosine release.
J Physiol. 2007 Jun 1;581(Pt 2):553-65. doi: 10.1113/jphysiol.2006.126417. Epub 2007 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验