Suppr超能文献

应用扩展均衡-消除模型提高空间分布掩蔽下的言语可懂度。

Application of an extended equalization-cancellation model to speech intelligibility with spatially distributed maskers.

机构信息

Department of Biomedical Engineering, Boston University, Hearing Research Center, Boston, Massachusetts 02215, USA.

出版信息

J Acoust Soc Am. 2010 Dec;128(6):3678-90. doi: 10.1121/1.3502458.

Abstract

An extended version of the equalization-cancellation (EC) model of binaural processing is described and applied to speech intelligibility tasks in the presence of multiple maskers. The model incorporates time-varying jitters, both in time and amplitude, and implements the equalization and cancellation operations in each frequency band independently. The model is consistent with the original EC model in predicting tone-detection performance for a large set of configurations. When the model is applied to speech, the speech intelligibility index is used to predict speech intelligibility performance in a variety of conditions. Specific conditions addressed include different types of maskers, different numbers of maskers, and different spatial locations of maskers. Model predictions are compared with empirical measurements reported by Hawley et al. [J. Acoust. Soc. Am. 115, 833-843 (2004)] and by Marrone et al. [J. Acoust. Soc. Am. 124, 1146-1158 (2008)]. The model succeeds in predicting speech intelligibility performance when maskers are speech-shaped noise or broadband-modulated speech-shaped noise but fails when the maskers are speech or reversed speech.

摘要

描述了一种扩展的双耳处理均衡-抵消(EC)模型,并将其应用于存在多个掩蔽器的语音可懂度任务中。该模型在每个频带中都包含时间和幅度的时变抖动,并独立执行均衡和抵消操作。该模型在预测大量配置的音调检测性能方面与原始 EC 模型一致。当该模型应用于语音时,使用语音可懂度指数来预测各种条件下的语音可懂度性能。具体涉及的条件包括不同类型的掩蔽器、不同数量的掩蔽器以及掩蔽器的不同空间位置。模型预测与 Hawley 等人[J. Acoust. Soc. Am. 115, 833-843(2004)]和 Marrone 等人[J. Acoust. Soc. Am. 124, 1146-1158(2008)]报告的实验测量结果进行了比较。当掩蔽器为语音噪声或宽带调制语音噪声时,该模型成功预测了语音可懂度性能,但当掩蔽器为语音或反转语音时,模型预测失败。

相似文献

7
9
A Binaural Grouping Model for Predicting Speech Intelligibility in Multitalker Environments.
Trends Hear. 2016 Oct 3;20:2331216516669919. doi: 10.1177/2331216516669919.
10
A joint framework for blind prediction of binaural speech intelligibility and perceived listening effort.
Hear Res. 2022 Dec;426:108598. doi: 10.1016/j.heares.2022.108598. Epub 2022 Aug 8.

引用本文的文献

1
Inferring the basis of binaural detection with a modified autoencoder.
Front Neurosci. 2023 Jan 26;17:1000079. doi: 10.3389/fnins.2023.1000079. eCollection 2023.
2
Binaural Recordings in Natural Acoustic Environments: Estimates of Speech-Likeness and Interaural Parameters.
Trends Hear. 2020 Jan-Dec;24:2331216520972858. doi: 10.1177/2331216520972858.
3
Modeling Binaural Unmasking of Speech Using a Blind Binaural Processing Stage.
Trends Hear. 2020 Jan-Dec;24:2331216520975630. doi: 10.1177/2331216520975630.
6
A Binaural Grouping Model for Predicting Speech Intelligibility in Multitalker Environments.
Trends Hear. 2016 Oct 3;20:2331216516669919. doi: 10.1177/2331216516669919.
8
The cocktail-party problem revisited: early processing and selection of multi-talker speech.
Atten Percept Psychophys. 2015 Jul;77(5):1465-87. doi: 10.3758/s13414-015-0882-9.
10

本文引用的文献

1
Revision, extension, and evaluation of a binaural speech intelligibility model.
J Acoust Soc Am. 2010 Apr;127(4):2479-97. doi: 10.1121/1.3295575.
2
The combined effects of reverberation and nonstationary noise on sentence intelligibility.
J Acoust Soc Am. 2008 Aug;124(2):1269-77. doi: 10.1121/1.2945153.
3
Tuning in the spatial dimension: evidence from a masked speech identification task.
J Acoust Soc Am. 2008 Aug;124(2):1146-58. doi: 10.1121/1.2945710.
4
Monaural level discrimination under dichotic conditions.
J Acoust Soc Am. 2008 Jun;123(6):4421-33. doi: 10.1121/1.2912828.
8
The benefit of binaural hearing in a cocktail party: effect of location and type of interferer.
J Acoust Soc Am. 2004 Feb;115(2):833-43. doi: 10.1121/1.1639908.
9
TIME-INTENSITY RELATIONS IN BINAURAL UNMASKING.
J Acoust Soc Am. 1965 Jul;38:93-103. doi: 10.1121/1.1909625.
10
Note on informational masking.
J Acoust Soc Am. 2003 Jun;113(6):2984-7. doi: 10.1121/1.1570435.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验