Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
Mol Pharmacol. 2011 Apr;79(4):681-91. doi: 10.1124/mol.110.068031. Epub 2011 Jan 10.
hKv1.3 channels in lymphocytes are targets for the chemotherapy treatment of autoimmune diseases. Phenylalkylamines block Kv1.3 channels by poorly understood mechanisms. In the inactivation-reduced mutant H399T, the second mutation A413C in S6 substantially decreases the potency of phenylalkylamines with a para-methoxy group at the phenylethylamine end, whereas potency of phenylalkylamines lacking this group is less affected. Intriguingly, completely demethoxylated emopamil blocks mutant H399T/A413C with a 2:1 stoichiometry. Here, we generated a triple mutant, H399T/C412A/A413C, and found that its emopamil-binding properties are similar to those of the double mutant. These data rule out disulfide bonding Cys412-Cys413, which would substantially deform the inner helix, suggest a clash of Cys413 with the para-methoxy group, and provide a distance constraint to dock phenylalkylamines in a Kv1.2-based homology model. Monte Carlo minimizations predict that the verapamil ammonium group donates an H-bond to the backbone carbonyl of Thr391 at the P-loop turn, the pentanenitrilephenyl moiety occludes the pore, whereas the phenylethylamine meta- and para-methoxy substituents approach, respectively, the side chains of Met390 and Ala413. In the double-mutant model, the Cys413 side chains accept H-bonds from two emopamil molecules whose phenyl rings fit in the hydrophobic intersubunit interfaces, whereas the pentanenitrilephenyl moieties occlude the pore. Because these interfaces are unattractive for a methoxylated phenyl ring, the ammonium group of respective phenylalkylamines cannot approach the Cys413 side chain and binds at the focus of P-helices, whereas the para-methoxy group clashes with Cys413. Our study proposes an atomistic mechanism of Kv1.3 block by phenylalkylamines and highlights the intra- and intersubunit interfaces as ligand binding loci.
淋巴细胞中的 hKv1.3 通道是治疗自身免疫性疾病的化疗药物的靶点。苯丙胺类通过尚未完全阐明的机制阻断 Kv1.3 通道。在失活减少的突变体 H399T 中,S6 中的第二个突变 A413C 大大降低了苯丙胺末端对位甲氧基取代基的苯丙胺类药物的效力,而缺乏该基团的苯丙胺类药物的效力受影响较小。有趣的是,完全去甲氧基的 emopamil 以 2:1 的化学计量比阻断突变体 H399T/A413C。在这里,我们生成了一个三重突变体 H399T/C412A/A413C,并发现其 emopamil 结合特性与双突变体相似。这些数据排除了 Cys412-Cys413 的二硫键形成,这将大大改变内部螺旋,表明 Cys413 与对位甲氧基基团发生冲突,并为 dock 在 Kv1.2 同源模型中的苯丙胺类药物提供了距离约束。蒙特卡罗最小化预测维拉帕米铵基团在 P 环转折处与 Thr391 的骨架羰基形成氢键,戊烷三硝苯基部分阻塞孔,而苯丙胺的间位和对位甲氧基取代基分别接近 Met390 和 Ala413 的侧链。在双突变体模型中,Cys413 侧链接受来自两个 emopamil 分子的氢键,其苯环适合于疏水性亚基间界面,而戊烷三硝苯基部分阻塞孔。由于这些界面对甲氧基取代的苯环没有吸引力,相应的苯丙胺类药物的铵基团不能接近 Cys413 侧链,并结合在 P 螺旋的焦点处,而对位甲氧基基团与 Cys413 发生冲突。我们的研究提出了苯丙胺类药物阻断 Kv1.3 的原子机制,并强调了亚基内和亚基间界面作为配体结合位点。