Tikhonov Denis B, Zhorov Boris S
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
Biochim Biophys Acta. 2014 Mar;1838(3):978-87. doi: 10.1016/j.bbamem.2013.11.019. Epub 2013 Dec 5.
The inner pore of potassium channels is targeted by many ligands of intriguingly different chemical structures. Previous studies revealed common and diverse characteristics of action of ligands including cooperativity of ligand binding, voltage- and use-dependencies, and patterns of ligand-sensing residues. Not all these data are rationalized in published models of ligand-channel complexes. Here we have used energy calculations with experimentally defined constraints to dock flecainide, ICAGEN-4, benzocaine, vernakalant, and AVE0118 into the inner pore of Kv1.5 channel. We arrived at ligand-binding models that suggest possible explanations for different values of the Hill coefficient, different voltage dependencies of ligands action, and effects of mutations of residues in subunit interfaces. Two concepts were crucial to build the models. First, the inner-pore block of a potassium channel requires a cationic "blocking particle". A ligand, which lacks a positively charged group, blocks the channel in a complex with a permeant ion. Second, hydrophobic moieties of a flexible ligand have a tendency to bind in hydrophobic subunit interfaces.
钾通道的内孔被许多化学结构迥异的配体所靶向。先前的研究揭示了配体作用的共同和多样特征,包括配体结合的协同性、电压和使用依赖性以及配体感应残基的模式。并非所有这些数据都能在已发表的配体-通道复合物模型中得到合理的解释。在这里,我们利用具有实验定义约束的能量计算,将氟卡尼、ICAGEN-4、苯佐卡因、维纳卡兰和AVE0118对接至Kv1.5通道的内孔中。我们得出了配体结合模型,这些模型为希尔系数的不同值、配体作用的不同电压依赖性以及亚基界面中残基突变的影响提供了可能的解释。构建这些模型有两个关键概念。第一,钾通道的内孔阻断需要一个阳离子“阻断粒子”。缺乏带正电荷基团的配体,会与通透离子形成复合物来阻断通道。第二,柔性配体的疏水部分倾向于结合在疏水的亚基界面中。