Trends Cogn Sci. 1997 Oct;1(7):273-81. doi: 10.1016/S1364-6613(97)01081-4.
Recent computational research on natural language corpora has revealed that relatively simple statistical learning mechanisms can make an important contribution to certain aspects of language acquisition. For example, statistical and connectionist methods can provide valuable cues to word segmentation and to the acquisition of inflectional morphology, syntactic classes and aspects of word meaning. In each case, these cues are partial, and must be integrated with additional information, whether from other environmental cues or innate knowledge, to provide a complete solution to the acquisition problem. The success of these methods with real natural language corpora demonstrates their feasibility as part of the language acquisition mechanism, an area where previously most research has been limited to highly idealized artificial input or to a priori considerations regarding the feasibility of acquisition mechanisms. Exploring probabilistic learning mechanisms with natural language input provides both an empirical basis for assessing how innate constraints interact with information derived from the environment, and a source of hypotheses for experimental testing.
最近对自然语言语料库的计算研究表明,相对简单的统计学习机制可以为语言习得的某些方面做出重要贡献。例如,统计和连接主义方法可以为词分割和屈折形态、句法类别和词义的某些方面提供有价值的线索。在每种情况下,这些线索都是局部的,必须与其他环境线索或先天知识等附加信息结合起来,为习得问题提供完整的解决方案。这些方法在真实自然语言语料库上的成功证明了它们作为语言习得机制的一部分的可行性,在这个领域,以前的大多数研究都局限于高度理想化的人工输入或关于习得机制可行性的先验考虑。用自然语言输入探索概率学习机制,既为评估先天约束与从环境中获得的信息如何相互作用提供了一个经验基础,也为实验测试提供了一个假设来源。