Suppr超能文献

基于小波包能量和支持向量机的中医听诊信号客观化研究

Objective research of auscultation signals in Traditional Chinese Medicine based on wavelet packet energy and support vector machine.

作者信息

Yan Jianjun, Shen Xiaojing, Wang Yiqin, Li Fufeng, Xia Chunming, Guo Rui, Chen Chunfeng, Shen Qingwei

机构信息

Center for Mechatronics Engineering, East China University of Science and Technology, Shanghai 200237, China.

出版信息

Int J Bioinform Res Appl. 2010;6(5):435-48. doi: 10.1504/IJBRA.2010.037984.

Abstract

This study aims at utilising Wavelet Packet Transform (WPT) and Support Vector Machine (SVM) algorithm to make objective analysis and quantitative research for the auscultation in Traditional Chinese Medicine (TCM) diagnosis. First, Wavelet Packet Decomposition (WPD) at level 6 was employed to split more elaborate frequency bands of the auscultation signals. Then statistic analysis was made based on the extracted Wavelet Packet Energy (WPE) features from WPD coefficients. Furthermore, the pattern recognition was used to distinguish mixed subjects' statistical feature values of sample groups through SVM. Finally, the experimental results showed that the classification accuracies were at a high level.

摘要

本研究旨在利用小波包变换(WPT)和支持向量机(SVM)算法对中医诊断中的听诊进行客观分析和定量研究。首先,采用6层小波包分解(WPD)来划分听诊信号更精细的频段。然后基于从WPD系数中提取的小波包能量(WPE)特征进行统计分析。此外,通过支持向量机利用模式识别来区分样本组混合受试者的统计特征值。最后,实验结果表明分类准确率处于较高水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验