Suppr超能文献

基于小波包分解树的多水平基选择在心音分类中的应用。

Multi-level basis selection of wavelet packet decomposition tree for heart sound classification.

机构信息

Department of Multimedia, Faculty of Computer Science and Information Technology, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Department of Computer Engineering, Islamic Azad University, Islamshahr Branch, Tehran, Iran.

出版信息

Comput Biol Med. 2013 Oct;43(10):1407-14. doi: 10.1016/j.compbiomed.2013.06.016. Epub 2013 Jul 6.

Abstract

Wavelet packet transform decomposes a signal into a set of orthonormal bases (nodes) and provides opportunities to select an appropriate set of these bases for feature extraction. In this paper, multi-level basis selection (MLBS) is proposed to preserve the most informative bases of a wavelet packet decomposition tree through removing less informative bases by applying three exclusion criteria: frequency range, noise frequency, and energy threshold. MLBS achieved an accuracy of 97.56% for classifying normal heart sound, aortic stenosis, mitral regurgitation, and aortic regurgitation. MLBS is a promising basis selection to be suggested for signals with a small range of frequencies.

摘要

小波包变换将信号分解为一组正交基(节点),并提供了选择合适基的机会,以进行特征提取。本文提出了多级基选择(MLBS),通过应用三个排除标准(频率范围、噪声频率和能量阈值),从小波包分解树中去除信息量较少的基,从而保留最具信息量的基。MLBS 对正常心音、主动脉瓣狭窄、二尖瓣反流和主动脉瓣反流的分类准确率达到了 97.56%。MLBS 是一种很有前途的基选择方法,适用于频率范围较小的信号。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验