Tanaka Gouhei, Okada Yusuke, Aihara Kazuyuki
Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):035202. doi: 10.1103/PhysRevE.82.035202. Epub 2010 Sep 3.
In globally coupled networks composed of oscillatory and nonoscillatory elements, the balance between the subpopulations plays an important role in network dynamics and phase transitions. To extend this framework, we investigate mixed populations consisting of two types of self-oscillatory elements with different periods, particularly given by limit cycle oscillators and period-doubled ones. Phase transitions in the mixed populations are elucidated by numerical bifurcation analyses of a reduced system. We numerically confirm a formula determining the critical balance between the subpopulations for a phase transition at sufficiently large coupling strength.
在由振荡和非振荡元件组成的全局耦合网络中,亚群之间的平衡在网络动力学和相变中起着重要作用。为了扩展这个框架,我们研究了由两种具有不同周期的自振荡元件组成的混合群体,特别是由极限环振荡器和倍周期振荡器给出的情况。通过对简化系统的数值分岔分析来阐明混合群体中的相变。我们通过数值验证了一个公式,该公式确定了在足够大的耦合强度下亚群之间相变的临界平衡。