Suppr超能文献

由两种具有不同周期的自振荡元件组成的混合群体中的相变。

Phase transitions in mixed populations composed of two types of self-oscillatory elements with different periods.

作者信息

Tanaka Gouhei, Okada Yusuke, Aihara Kazuyuki

机构信息

Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):035202. doi: 10.1103/PhysRevE.82.035202. Epub 2010 Sep 3.

Abstract

In globally coupled networks composed of oscillatory and nonoscillatory elements, the balance between the subpopulations plays an important role in network dynamics and phase transitions. To extend this framework, we investigate mixed populations consisting of two types of self-oscillatory elements with different periods, particularly given by limit cycle oscillators and period-doubled ones. Phase transitions in the mixed populations are elucidated by numerical bifurcation analyses of a reduced system. We numerically confirm a formula determining the critical balance between the subpopulations for a phase transition at sufficiently large coupling strength.

摘要

在由振荡和非振荡元件组成的全局耦合网络中,亚群之间的平衡在网络动力学和相变中起着重要作用。为了扩展这个框架,我们研究了由两种具有不同周期的自振荡元件组成的混合群体,特别是由极限环振荡器和倍周期振荡器给出的情况。通过对简化系统的数值分岔分析来阐明混合群体中的相变。我们通过数值验证了一个公式,该公式确定了在足够大的耦合强度下亚群之间相变的临界平衡。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验