Suppr超能文献

空间囚徒困境博弈中动态生成的循环优势

Dynamically generated cyclic dominance in spatial prisoner's dilemma games.

作者信息

Szolnoki Attila, Wang Zhen, Wang Jinlong, Zhu Xiaodan

机构信息

Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest, Hungary.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036110. doi: 10.1103/PhysRevE.82.036110. Epub 2010 Sep 20.

Abstract

We have studied the impact of time-dependent learning capacities of players in the framework of spatial prisoner's dilemma game. In our model, this capacity of players may decrease or increase in time after strategy adoption according to a steplike function. We investigated both possibilities separately and observed significantly different mechanisms that form the stationary pattern of the system. The time decreasing learning activity helps cooperator domains to recover the possible intrude of defectors hence supports cooperation. In the other case the temporary restrained learning activity generates a cyclic dominance between defector and cooperator strategies, which helps to maintain the diversity of strategies via propagating waves. The results are robust and remain valid by changing payoff values, interaction graphs or functions characterizing time dependence of learning activity. Our observations suggest that dynamically generated mechanisms may offer alternative ways to keep cooperators alive even at very larger temptation to defect.

摘要

我们在空间囚徒困境博弈的框架下研究了参与者随时间变化的学习能力的影响。在我们的模型中,参与者的这种能力在采用策略后可能会根据一个阶梯函数随时间减少或增加。我们分别研究了这两种可能性,并观察到形成系统稳态模式的显著不同机制。学习活动随时间减少有助于合作区域恢复可能出现的背叛者入侵,从而支持合作。在另一种情况下,暂时受限的学习活动会在背叛者和合作者策略之间产生循环主导,这有助于通过传播波来维持策略的多样性。通过改变收益值、相互作用图或表征学习活动时间依赖性的函数,结果是稳健的且仍然有效。我们的观察表明,动态生成的机制可能提供替代方法,即使在面临非常大的背叛诱惑时也能使合作者存活下来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验