Suppr超能文献

使用可见性图描述随机和混沌序列。

Description of stochastic and chaotic series using visibility graphs.

作者信息

Lacasa Lucas, Toral Raul

机构信息

Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, Campus UIB, 07122-Palma de Mallorca, Spain.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036120. doi: 10.1103/PhysRevE.82.036120. Epub 2010 Sep 29.

Abstract

Nonlinear time series analysis is an active field of research that studies the structure of complex signals in order to derive information of the process that generated those series, for understanding, modeling and forecasting purposes. In the last years, some methods mapping time series to network representations have been proposed. The purpose is to investigate on the properties of the series through graph theoretical tools recently developed in the core of the celebrated complex network theory. Among some other methods, the so-called visibility algorithm has received much attention, since it has been shown that series correlations are captured by the algorithm and translated in the associated graph, opening the possibility of building fruitful connections between time series analysis, nonlinear dynamics, and graph theory. Here we use the horizontal visibility algorithm to characterize and distinguish between correlated stochastic, uncorrelated and chaotic processes. We show that in every case the series maps into a graph with exponential degree distribution P(k)∼exp(-λk), where the value of λ characterizes the specific process. The frontier between chaotic and correlated stochastic processes, λ=ln(3/2) , can be calculated exactly, and some other analytical developments confirm the results provided by extensive numerical simulations and (short) experimental time series.

摘要

非线性时间序列分析是一个活跃的研究领域,它研究复杂信号的结构,以便获取生成这些序列的过程的信息,用于理解、建模和预测。在过去几年中,已经提出了一些将时间序列映射到网络表示的方法。目的是通过最近在著名的复杂网络理论核心中发展起来的图论工具来研究序列的性质。在其他一些方法中,所谓的可见性算法受到了广泛关注,因为已经表明该算法能够捕捉序列相关性并将其转化到相关图中,从而为在时间序列分析、非线性动力学和图论之间建立富有成效的联系开辟了可能性。在这里,我们使用水平可见性算法来表征和区分相关随机过程、不相关过程和混沌过程。我们表明,在每种情况下,序列都映射到一个具有指数度分布(P(k) \sim \exp(-\lambda k))的图中,其中(\lambda)的值表征了特定过程。混沌过程和相关随机过程之间的边界(\lambda = \ln(3/2))可以精确计算,并且一些其他的分析进展证实了大量数值模拟和(短)实验时间序列所提供的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验