Kunnen R P J, Clercx H J H, Geurts B J
Fluid Dynamics Laboratory, Department of Physics, International Collaboration for Turbulence Research (ICTR) and J. M. Burgers Center for Fluid Dynamics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036306. doi: 10.1103/PhysRevE.82.036306. Epub 2010 Sep 8.
The vortices emerging in rotating turbulent Rayleigh-Bénard convection in water at Rayleigh number Ra=6.0×10{8} are investigated using stereoscopic particle image velocimetry and by direct numerical simulation. The so-called Q criterion is used to detect the vortices from velocity fields. This criterion allows distinguishing vorticity- and strain-dominated regions in the flow by decomposing the velocity gradient tensor into symmetric and antisymmetric parts. Vortex densities, mean vortex radii and mean vortex circulations are calculated at two horizontal cross-sections of the cylindrical flow domain and at several rotation rates, described by the Taylor number which takes values between 3.0×10{8} and 7.7×10{10} . Separate statistics are calculated for cyclonic and anticyclonic vortices. Vortex densities and mean vortex radii are mostly independent of the Taylor number except very close to the bottom and top plates where more vortices are detected when the Taylor number is raised (rotation increases). The vortex population close to the plate consists mostly of cyclones while further into the bulk of the domain a similar amount of cyclones and anticyclones is found. The cyclonic vortices contain more circulation than the anticyclones. The same vortex analysis of the simulation results at additional vertical positions revealed that the vortices are formed in a boundary layer on the plate with a thickness of approximately two Ekman lengths.
利用立体粒子图像测速技术并通过直接数值模拟,研究了瑞利数(Ra = 6.0×10^{8})时水中旋转湍流瑞利 - 贝纳德对流中出现的涡旋。使用所谓的(Q)准则从速度场中检测涡旋。该准则通过将速度梯度张量分解为对称和反对称部分,能够区分流动中以涡度和应变为主的区域。在圆柱流场的两个水平横截面以及几个由泰勒数描述的旋转速率下计算涡旋密度、平均涡旋半径和平均涡旋环流,泰勒数取值范围在(3.0×10^{8})到(7.7×10^{10})之间。分别计算气旋性涡旋和反气旋性涡旋的统计量。涡旋密度和平均涡旋半径大多与泰勒数无关,除了非常靠近底部和顶部平板的地方,当泰勒数增加(旋转加快)时会检测到更多涡旋。靠近平板的涡旋群体主要由气旋组成,而在流体主体中发现气旋和反气旋的数量相近。气旋性涡旋比反气旋性涡旋包含更多的环流。在其他垂直位置对模拟结果进行相同的涡旋分析表明,涡旋在平板上的边界层中形成,边界层厚度约为两个埃克曼长度。