Technische Universitaet Ilmenau, Institute of Thermodynamics and Fluid Mechanics, P.O. Box 100565, 98684 Ilmenau, Germany.
German Aerospace Center, Institute of Propulsion Technology, 51170 Koeln, Germany.
Phys Rev Lett. 2014 Mar 28;112(12):124301. doi: 10.1103/PhysRevLett.112.124301. Epub 2014 Mar 26.
Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.
呈现了瑞利-贝纳德实验边界层的流动可视化和粒子图像测速测量结果,瑞利数 Ra=1.4×1010。我们的可视化结果表明,流动结构的出现类似于普通(等温)湍流边界层。我们的粒子图像测速测量结果表明,产生了具有正负符号的涡度,并且最小的流动结构比边界层厚度小 1 个数量级。使用激光多普勒测速仪进行的其他局部测量结果表明,湍流动能强度高达 I=0.4,与湍流大气边界层中的情况相同。根据我们的观察,我们得出结论,尽管其雷诺数 Re≈200 明显小于现有唯象理论所依据的 420,但对流边界层局部且暂时变得不稳定。我们认为,在湍流瑞利-贝纳德对流中,边界层向湍流的转变取决于流场的细微细节,因此不是普适的。