Suppr超能文献

协变与正交李雅普诺夫向量之间的比较。

Comparison between covariant and orthogonal Lyapunov vectors.

作者信息

Yang Hong-liu, Radons Günter

机构信息

Institute of Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 2):046204. doi: 10.1103/PhysRevE.82.046204. Epub 2010 Oct 5.

Abstract

Two sets of vectors, covariant Lyapunov vectors (CLVs) and orthogonal Lyapunov vectors (OLVs), are currently used to characterize the linear stability of chaotic systems. A comparison is made to show their similarity and difference, especially with respect to the influence on hydrodynamic Lyapunov modes (HLMs). Our numerical simulations show that in both Hamiltonian and dissipative systems HLMs formerly detected via OLVs survive if CLVs are used instead. Moreover, the previous classification of two universality classes works for CLVs as well, i.e., the dispersion relation is linear for Hamiltonian systems and quadratic for dissipative systems, respectively. The significance of HLMs changes in different ways for Hamiltonian and dissipative systems with the replacement of OLVs with CLVs. For general dissipative systems with nonhyperbolic dynamics the long-wavelength structure in Lyapunov vectors corresponding to near-zero Lyapunov exponents is strongly reduced if CLVs are used instead, whereas for highly hyperbolic dissipative systems the significance of HLMs is nearly identical for CLVs and OLVs. In contrast the HLM significance of Hamiltonian systems is always comparable for CLVs and OLVs irrespective of hyperbolicity. We also find that in Hamiltonian systems different symmetry relations between conjugate pairs are observed for CLVs and OLVs. Especially, CLVs in a conjugate pair are statistically indistinguishable in consequence of the microreversibility of Hamiltonian systems. Transformation properties of Lyapunov exponents, CLVs, and hyperbolicity under changes of coordinate are discussed in appendices.

摘要

目前,有两组向量,即协变李雅普诺夫向量(CLV)和正交李雅普诺夫向量(OLV),用于表征混沌系统的线性稳定性。本文进行了比较以展示它们的异同,特别是在对流体动力学李雅普诺夫模态(HLM)的影响方面。我们的数值模拟表明,在哈密顿系统和耗散系统中,如果改用CLV来检测,先前通过OLV检测到的HLM依然存在。此外,之前对两个普适类的分类对于CLV同样适用,即对于哈密顿系统,色散关系是线性的,对于耗散系统则是二次的。用CLV替代OLV后,HLM在哈密顿系统和耗散系统中的意义以不同方式发生变化。对于具有非双曲动力学的一般耗散系统,如果改用CLV,对应于接近零李雅普诺夫指数的李雅普诺夫向量中的长波结构会大幅减少,而对于高度双曲的耗散系统,CLV和OLV的HLM意义几乎相同。相反,无论双曲性如何,CLV和OLV的哈密顿系统的HLM意义总是相当的。我们还发现,在哈密顿系统中,CLV和OLV的共轭对之间存在不同的对称关系。特别是,由于哈密顿系统的微观可逆性,共轭对中的CLV在统计上无法区分。附录中讨论了坐标变化下李雅普诺夫指数、CLV和双曲性的变换性质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验