Barbish J, Paul M R
Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
Phys Rev E. 2023 Nov;108(5-1):054202. doi: 10.1103/PhysRevE.108.054202.
We explore the high-dimensional chaos of a one-dimensional lattice of diffusively coupled tent maps using the covariant Lyapunov vectors (CLVs). We investigate the connection between the dynamics of the maps in the physical space and the dynamics of the covariant Lyapunov vectors and covariant Lyapunov exponents that describe the direction and growth (or decay) of small perturbations in the tangent space. We explore the tangent space splitting into physical and transient modes and find that the splitting persists for all of the conditions we explore. In general, the leading CLVs are highly localized in space and the CLVs become less localized with increasing Lyapunov index. We consider the dynamics with a conservation law whose strength is controlled by a parameter that can be continuously varied. Our results indicate that a conservation law delocalizes the spatial variation of the CLVs. We find that when a conservation law is present, the leading CLVs are entangled with fewer of their neighboring CLVs than in the absence of a conservation law.
我们使用协变李雅普诺夫向量(CLV)来探索扩散耦合帐篷映射的一维晶格的高维混沌。我们研究物理空间中映射的动力学与协变李雅普诺夫向量和协变李雅普诺夫指数的动力学之间的联系,这些向量和指数描述了切空间中小扰动的方向和增长(或衰减)。我们探索切空间分裂为物理模式和瞬态模式,并发现这种分裂在我们探索的所有条件下都持续存在。一般来说,主导的CLV在空间中高度局域化,并且随着李雅普诺夫指数的增加,CLV的局域化程度降低。我们考虑具有守恒律的动力学,其强度由一个可以连续变化的参数控制。我们的结果表明,守恒律使CLV的空间变化非局域化。我们发现,当存在守恒律时,主导的CLV与其相邻CLV的纠缠比不存在守恒律时更少。