Sohn Sung-Ik, Yoon Daeki, Hwang Woonjae
Department of Mathematics, Kangnung-Wonju National University, Kangnung 210-702, South Korea.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 2):046711. doi: 10.1103/PhysRevE.82.046711. Epub 2010 Oct 26.
The nonlinear evolution of an interface subject to a parallel shear flow is studied by the vortex sheet model. We perform long-time computations for the vortex sheet in density-stratified fluids by using the point vortex method and investigate late-time dynamics of the Kelvin-Helmholtz instability. We apply an adaptive point insertion procedure and a high-order shock-capturing scheme to the vortex method to handle the nonuniform distribution of point vortices and enhance the resolution. Our adaptive vortex method successfully simulates chaotically distorted interfaces of the Kelvin-Helmholtz instability with fine resolutions. The numerical results show that the Kelvin-Helmholtz instability evolves a secondary instability at a late time, distorting the internal rollup, and eventually develops to a disordered structure.
通过涡旋片模型研究了受平行剪切流作用的界面的非线性演化。我们使用点涡方法对密度分层流体中的涡旋片进行长时间计算,并研究开尔文 - 亥姆霍兹不稳定性的后期动力学。我们将自适应点插入过程和高阶激波捕捉方案应用于涡旋方法,以处理点涡的非均匀分布并提高分辨率。我们的自适应涡旋方法成功地以高分辨率模拟了开尔文 - 亥姆霍兹不稳定性的混沌扭曲界面。数值结果表明,开尔文 - 亥姆霍兹不稳定性在后期会演变为二次不稳定性,使内部卷起变形,最终发展为无序结构。