Dalmazi D, Sá F L
Univ. Estadual Paulista, Campus de Guaratinguetá, DFQ, Av. Dr. Ariberto P. da Cunha 333, CEP 12516-410 Guaratinguetá, SP, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051108. doi: 10.1103/PhysRevE.82.051108. Epub 2010 Nov 5.
We show here for the one-dimensional spin-1/2 axial-next-to-nearest-neighbor Ising model in an external magnetic field that the linear density of Yang-Lee zeros may diverge with critical exponent σ=-2/3 at the Yang-Lee edge singularity. The necessary condition for this unusual behavior is the triple degeneracy of the transfer-matrix eigenvalues. If this condition is absent we have the usual value σ=-1/2 . Analogous results have been found in the literature in the spin-1 Blume-Emery-Griffths model and in the three-state Potts model in a magnetic field with two complex components. Our results support the universality of σ=-2/3 which might be a one-dimensional footprint of a tricritical version of the Yang-Lee edge singularity possibly present also in higher-dimensional spin models.
我们在此表明,对于处于外磁场中的一维自旋 - 1/2 轴向次近邻伊辛模型,在杨 - 李边缘奇点处,杨 - 李零点的线密度可能以临界指数σ = -2/3发散。这种异常行为的必要条件是转移矩阵本征值的三重简并。如果不存在此条件,我们得到通常的值σ = -1/2。在文献中,在自旋 - 1 的布卢姆 - 埃默里 - 格里菲斯模型以及具有两个复分量的磁场中的三态Potts模型中也发现了类似结果。我们的结果支持σ = -2/3的普遍性,这可能是杨 - 李边缘奇点的三临界版本在一维中的印记,也可能存在于更高维自旋模型中。