Suppr超能文献

相对论无碰撞流体方程的时间相关闭合关系。

Time-dependent closure relations for relativistic collisionless fluid equations.

作者信息

Bendib-Kalache K, Bendib A, El Hadj K Mohammed

机构信息

Laboratoire Electronique Quantique, Faculté de Physique, USTHB, BP32 El Alia, 16111 Bab Ezzouar, Algiers, Algeria.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 2):056401. doi: 10.1103/PhysRevE.82.056401. Epub 2010 Nov 1.

Abstract

Linear fluid equations for relativistic and collisionless plasmas are derived. Closure relations for the fluid equations are analytically computed from the relativistic Vlasov equation in the Fourier space (ω,k), where ω and k are the conjugate variables of time t and space x variables, respectively. The mathematical method used is based on the projection operator techniques and the continued fraction mathematical tools. The generalized heat flux and stress tensor are calculated for arbitrary parameter ω/kc where c is the speed of light, and for arbitrary relativistic parameter z=mc²/T , where m is the particle rest mass and T, the plasma temperature in energy units.

摘要

推导了相对论性无碰撞等离子体的线性流体方程。流体方程的封闭关系是在傅里叶空间(ω,k)中从相对论性弗拉索夫方程解析计算得到的,其中ω和k分别是时间t和空间x变量的共轭变量。所采用的数学方法基于投影算子技术和连分数数学工具。针对任意参数ω/kc(其中c为光速)以及任意相对论参数z = mc²/T(其中m为粒子静止质量,T是以能量单位表示的等离子体温度),计算了广义热通量和应力张量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验