Bendib-Kalache K, Bendib A, El Hadj K Mohammed
Laboratoire Electronique Quantique, Faculté de Physique, USTHB, BP32 El Alia, 16111 Bab Ezzouar, Algiers, Algeria.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 2):056401. doi: 10.1103/PhysRevE.82.056401. Epub 2010 Nov 1.
Linear fluid equations for relativistic and collisionless plasmas are derived. Closure relations for the fluid equations are analytically computed from the relativistic Vlasov equation in the Fourier space (ω,k), where ω and k are the conjugate variables of time t and space x variables, respectively. The mathematical method used is based on the projection operator techniques and the continued fraction mathematical tools. The generalized heat flux and stress tensor are calculated for arbitrary parameter ω/kc where c is the speed of light, and for arbitrary relativistic parameter z=mc²/T , where m is the particle rest mass and T, the plasma temperature in energy units.
推导了相对论性无碰撞等离子体的线性流体方程。流体方程的封闭关系是在傅里叶空间(ω,k)中从相对论性弗拉索夫方程解析计算得到的,其中ω和k分别是时间t和空间x变量的共轭变量。所采用的数学方法基于投影算子技术和连分数数学工具。针对任意参数ω/kc(其中c为光速)以及任意相对论参数z = mc²/T(其中m为粒子静止质量,T是以能量单位表示的等离子体温度),计算了广义热通量和应力张量。