M2P2, CNRS UMR 6181 & CMI, Ecole Centrale de Marseille, Universités d'Aix-Marseille, Marseille, France.
Phys Rev Lett. 2010 Oct 1;105(14):145001. doi: 10.1103/PhysRevLett.105.145001. Epub 2010 Sep 27.
The Lagrangian velocity statistics of dissipative drift-wave turbulence are investigated. For large values of the adiabaticity (or small collisionality), the probability density function of the Lagrangian acceleration shows exponential tails, as opposed to the stretched exponential or algebraic tails, generally observed for the highly intermittent acceleration of Navier-Stokes turbulence. This exponential distribution is shown to be a robust feature independent of the Reynolds number. For small adiabaticity, algebraic tails are observed, suggesting the strong influence of point-vortex-like dynamics on the acceleration. A causal connection is found between the shape of the probability density function and the autocorrelation of the norm of the acceleration.
耗散漂移波湍流的拉格朗日速度统计特性得到了研究。对于较大的绝热性(或较小的碰撞性),拉格朗日加速度的概率密度函数表现出指数尾部,与纳维-斯托克斯湍流的高度间歇加速度通常观察到的伸展指数或代数尾部相反。这种指数分布被证明是一个稳健的特征,与雷诺数无关。对于较小的绝热性,观察到的是代数尾部,这表明点涡类似动力学对加速度有强烈的影响。在概率密度函数的形状和加速度范数的自相关之间发现了因果关系。