Crawford Alice M, Mordant Nicolas, Bodenschatz Eberhard
Laboratory of Atomic and Solid State Physics, Clark Hall, Cornell University, Ithaca, New York, USA.
Phys Rev Lett. 2005 Jan 21;94(2):024501. doi: 10.1103/PhysRevLett.94.024501. Epub 2005 Jan 18.
We report experimental results on the joint statistics of the Lagrangian acceleration and velocity in highly turbulent flows. The acceleration was measured up to a microscale Reynolds number R(lambda)=690 using high speed silicon strip detectors from high energy physics. The acceleration variance was observed to be strongly dependent on the velocity, following a Heisenberg-Yaglom-like u(9/2) increase. However, the shape of the probability density functions of the acceleration component conditioned on the same component of the velocity when normalized by the acceleration variance was observed to be independent of velocity and to coincide with the unconditional probability density function of the acceleration components. This observation imposes a strong mathematical constraint on the possible functional form of the acceleration probability distribution function.
我们报告了关于高湍流流动中拉格朗日加速度和速度联合统计量的实验结果。使用来自高能物理的高速硅条探测器,测量了直至微尺度雷诺数(R(\lambda)=690)的加速度。观察到加速度方差强烈依赖于速度,遵循类似海森堡 - 雅格洛姆的(u^{9/2})增长规律。然而,当通过加速度方差进行归一化时,以速度的相同分量为条件的加速度分量的概率密度函数的形状被观察到与速度无关,并且与加速度分量的无条件概率密度函数一致。这一观察结果对加速度概率分布函数的可能函数形式施加了强大的数学约束。