Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA.
Phys Rev Lett. 2010 Oct 8;105(15):156603. doi: 10.1103/PhysRevLett.105.156603. Epub 2010 Oct 5.
As the thinnest atomic membrane, graphene presents an opportunity to combine geometry, elasticity, and electronics at the limits of their validity. We describe the transport and electronic structure in the neighborhood of conical singularities, the elementary excitations of the ubiquitous wrinkled and crumpled graphene. We use a combination of atomistic mechanical simulations, analytical geometry, and transport calculations in curved graphene, and exact diagonalization of the electronic spectrum to calculate the effects of geometry on electronic structure, transport, and mobility in suspended samples, and how the geometry-generated pseudomagnetic and pseudoelectric fields might disrupt Landau quantization.
作为最薄的原子膜,石墨烯提供了一个机会,可以在其有效性的极限处结合几何形状、弹性和电子学。我们描述了在圆锥奇点附近的输运和电子结构,这是无处不在的褶皱和皱缩石墨烯的基本激发态。我们使用原子力学模拟、解析几何和弯曲石墨烯中的输运计算以及电子谱的精确对角化的组合来计算几何形状对悬浮样品中电子结构、输运和迁移率的影响,以及几何形状产生的赝磁场和赝电场如何干扰朗道量子化。