Wang Zhu-Jun, Kong Xiao, Huang Yuan, Li Jun, Bao Lihong, Cao Kecheng, Hu Yuxiong, Cai Jun, Wang Lifen, Chen Hui, Wu Yueshen, Zhang Yiwen, Pang Fei, Cheng Zhihai, Babor Petr, Kolibal Miroslav, Liu Zhongkai, Chen Yulin, Zhang Qiang, Cui Yi, Liu Kaihui, Yang Haitao, Bao Xinhe, Gao Hong-Jun, Liu Zhi, Ji Wei, Ding Feng, Willinger Marc-Georg
School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
School of Natural Sciences, Technical University Munich, Munich, Germany.
Nat Mater. 2024 Mar;23(3):331-338. doi: 10.1038/s41563-023-01632-y. Epub 2023 Aug 3.
The properties of two-dimensional (2D) van der Waals materials can be tuned through nanostructuring or controlled layer stacking, where interlayer hybridization induces exotic electronic states and transport phenomena. Here we describe a viable approach and underlying mechanism for the assisted self-assembly of twisted layer graphene. The process, which can be implemented in standard chemical vapour deposition growth, is best described by analogy to origami and kirigami with paper. It involves the controlled induction of wrinkle formation in single-layer graphene with subsequent wrinkle folding, tearing and re-growth. Inherent to the process is the formation of intertwined graphene spirals and conversion of the chiral angle of 1D wrinkles into a 2D twist angle of a 3D superlattice. The approach can be extended to other foldable 2D materials and facilitates the production of miniaturized electronic components, including capacitors, resistors, inductors and superconductors.
二维(2D)范德华材料的性质可以通过纳米结构化或可控的层堆叠来调节,其中层间杂化会诱导出奇异的电子态和输运现象。在此,我们描述了一种用于扭曲层石墨烯辅助自组装的可行方法及潜在机制。该过程可在标准化学气相沉积生长中实现,用纸张的折纸和剪纸来类比最为恰当。它涉及在单层石墨烯中可控地诱导皱纹形成,随后进行皱纹折叠、撕裂和再生长。该过程的内在特点是形成相互缠绕的石墨烯螺旋,并将一维皱纹的手性角转换为三维超晶格的二维扭转角。这种方法可以扩展到其他可折叠的二维材料,并有助于生产包括电容器、电阻器、电感器和超导体在内的小型化电子元件。