Suppr超能文献

恶性 Lévy 飞行。

Vicious Lévy flights.

机构信息

School of Natural Sciences, University of California, Merced, California 95343, USA.

出版信息

Phys Rev Lett. 2010 Nov 5;105(19):190601. doi: 10.1103/PhysRevLett.105.190601.

Abstract

We study the statistics of encounters of Lévy flights by introducing the concept of vicious Lévy flights--distinct groups of walkers performing independent Lévy flights with the process terminating upon the first encounter between walkers of different groups. We show that the probability that the process survives up to time t decays as t-α at late times. We compute α up to the second order in ε expansion, where ε=σ-d, σ is the Lévy exponent, and d is the spatial dimension. For d=σ, we find the exponent of the logarithmic decay exactly. Theoretical values of the exponents are confirmed by numerical simulations. Our results indicate that walkers with smaller values of σ survive longer and are therefore more effective at avoiding each other.

摘要

我们通过引入恶性 Lévy 飞行的概念来研究 Lévy 飞行的遭遇统计,即不同群组的步行者执行独立 Lévy 飞行的过程,直到不同群组的步行者首次相遇为止。我们表明,过程在时间 t 内幸存的概率在后期以 t-α的速度衰减。我们在 ε 展开的二阶精度下计算α,其中ε=σ-d,σ是 Lévy 指数,d是空间维度。对于 d=σ,我们精确地找到了对数衰减的指数。通过数值模拟验证了理论值的正确性。我们的结果表明,具有较小σ值的步行者生存时间更长,因此彼此避免的效果更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验