Institute of Laser Engineering, Osaka University, Suita, Japan.
Phys Rev Lett. 2010 Dec 31;105(26):261101. doi: 10.1103/PhysRevLett.105.261101. Epub 2010 Dec 22.
To detect the gravitational-wave (GW) signal from binary neutron stars and extract information about the equation of state of matter at nuclear density, it is necessary to match the signal with a bank of accurate templates. We present the two longest (to date) general-relativistic simulations of equal-mass binary neutron stars with different compactnesses, C=0.12 and C=0.14, and compare them with a tidal extension of the effective-one-body (EOB) model. The typical numerical phasing errors over the ≃22 GW cycles are Δϕ≃±0.24 rad. By calibrating only one parameter (representing a higher-order amplification of tidal effects), the EOB model can reproduce, within the numerical error, the two numerical waveforms essentially up to the merger. By contrast, the third post-Newtonian Taylor-T4 approximant with leading-order tidal corrections dephases with respect to the numerical waveforms by several radians.
为了探测来自双中子星的引力波(GW)信号并提取核密度物质状态方程的信息,有必要将信号与准确模板库相匹配。我们展示了两个最长(迄今为止)的具有不同紧致度 C=0.12 和 C=0.14 的等质量双中子星的广义相对论模拟,并将它们与有效单一体(EOB)模型的潮汐扩展进行了比较。在 ≃22 GW 周期中,典型的数值调相误差约为 Δϕ≃±0.24 rad。通过仅校准一个参数(表示潮汐效应的高阶放大),EOB 模型可以在数值误差内再现两个数值波形,基本上直到合并。相比之下,具有领先阶潮汐修正的第三个后牛顿泰勒-T4 逼近相对于数值波形的调相误差为几个弧度。