Hannam Mark, Schmidt Patricia, Bohé Alejandro, Haegel Leïla, Husa Sascha, Ohme Frank, Pratten Geraint, Pürrer Michael
School of Physics and Astronomy, Cardiff University, Queens Building, CF24 3AA Cardiff, United Kingdom.
School of Physics and Astronomy, Cardiff University, Queens Building, CF24 3AA Cardiff, United Kingdom and LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125, USA and Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, California 91125, USA.
Phys Rev Lett. 2014 Oct 10;113(15):151101. doi: 10.1103/PhysRevLett.113.151101. Epub 2014 Oct 7.
The construction of a model of the gravitational-wave (GW) signal from generic configurations of spinning-black-hole binaries, through inspiral, merger, and ringdown, is one of the most pressing theoretical problems in the buildup to the era of GW astronomy. We present the first such model in the frequency domain, PhenomP, which captures the basic phenomenology of the seven-dimensional parameter space of binary configurations with only three key physical parameters. Two of these (the binary's mass ratio and an effective total spin parallel to the orbital angular momentum, which determines the inspiral rate) define an underlying nonprecessing-binary model. The nonprecessing-binary waveforms are then twisted up with approximate expressions for the precessional motion, which require only one additional physical parameter, an effective precession spin, χ(p). All other parameters (total mass, sky location, orientation and polarization, and initial phase) can be specified trivially. The model is constructed in the frequency domain, which will be essential for efficient GW searches and source measurements. We have tested the model's fidelity for GW applications by comparison against hybrid post-Newtonian-numerical-relativity waveforms at a variety of configurations--although we did not use these numerical simulations in the construction of the model. Our model can be used to develop GW searches, to study the implications for astrophysical measurements, and as a simple conceptual framework to form the basis of generic-binary waveform modeling in the advanced-detector era.
构建一个关于旋转黑洞双星一般构型在旋进、合并和铃宕阶段产生的引力波(GW)信号的模型,是引力波天文学时代到来之前最为紧迫的理论问题之一。我们在频域中给出了首个此类模型,即PhenomP模型,它仅用三个关键物理参数就捕捉到了双星构型七维参数空间的基本现象学特征。其中两个参数(双星的质量比以及与轨道角动量平行的有效总自旋,它决定了旋进速率)定义了一个潜在的非进动双星模型。然后,非进动双星波形通过进动运动的近似表达式进行扭曲,这只需要一个额外的物理参数,即有效进动自旋χ(p)。所有其他参数(总质量、天空位置、方向和偏振以及初始相位)都可以很容易地确定。该模型是在频域中构建的,这对于高效的引力波搜索和源测量至关重要。我们通过与各种构型下的混合后牛顿 - 数值相对论波形进行比较,测试了该模型在引力波应用中的保真度——尽管我们在构建模型时并未使用这些数值模拟。我们的模型可用于开展引力波搜索、研究对天体物理测量的影响,并作为一个简单的概念框架,在先进探测器时代形成一般双星波形建模的基础。