Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
Phys Rev Lett. 2010 Dec 31;105(26):268104. doi: 10.1103/PhysRevLett.105.268104. Epub 2010 Dec 30.
We demonstrate deterministic extensive chaos in the dynamics of large sparse networks of theta neurons in the balanced state. The analysis is based on numerically exact calculations of the full spectrum of Lyapunov exponents, the entropy production rate, and the attractor dimension. Extensive chaos is found in inhibitory networks and becomes more intense when an excitatory population is included. We find a strikingly high rate of entropy production that would limit information representation in cortical spike patterns to the immediate stimulus response.
我们在平衡状态下的大型稀疏θ神经元网络动力学中展示了确定性广泛混沌。分析基于对 Lyapunov 指数、熵产生率和吸引子维数的全谱的数值精确计算。在抑制性网络中发现了广泛的混沌,当包含兴奋性群体时,混沌变得更加剧烈。我们发现了一个惊人的高熵产生率,这将限制皮质尖峰模式中的信息表示到即时的刺激反应。