Suppr超能文献

赢者通吃单元网络的平衡状态

Balanced state of networks of winner-take-all units.

作者信息

Pang Rich

机构信息

Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America.

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America.

出版信息

PLoS Comput Biol. 2025 Jun 11;21(6):e1013081. doi: 10.1371/journal.pcbi.1013081. eCollection 2025 Jun.

Abstract

Irregularly timed action potentials, or spikes, are pervasively observed in the brain activity of awake mammals. However, the role of this temporal irregularity in neural computation is still not well understood. In canonical network models irregular spiking emerges via balanced, fluctuating input currents, leading to collective responses that track inputs linearly. How networks characterized by irregular spiking could support flexible nonlinear dynamics needed for general-purpose computation remains under ongoing debate. Here we characterize the dynamics of networks whose elementary unit is not a single neuron but a small group of neurons, with distinct tunings, that compete at each timestep via a winner-take-all (WTA) interaction. While WTA has long been proposed as an elementary functional motif in the brain and represents a powerful computational primitive, how large networks of such units behave has received less investigation. We show that these networks, like classic excitatory-inhibitory balanced networks, exhibit a chaotic fluctuation-driven regime characterized by sustained irregular activity resembling realistic cortical spiking, which we interpret as a multidimensional balance spread over several competing neural populations with different tunings. We develop a mean-field theory for the network, which shows how irregular spiking sustained by time-varying input fluctuations can support flexible nonlinear collective dynamics. Using the theory we predict and verify network regimes in which input fluctuations alone yield multistability, stable sequence generation, or complex heterogeneous firing rate dynamics-three core dynamical primitives thought to underlie memory-dependent neural computation-via consistent Poisson-like spiking produced through chaos. Thus, networks of WTA units support a chaotic fluctuation-driven regime characterized by irregular spiking that can power complex nonlinear collective dynamics. This represents a new model of brain activity capable of simultaneously reproducing realistic spike trains and diverse nonlinear firing rate patterns well posed for flexible computation, and which can be trained or fit to data.

摘要

在清醒哺乳动物的大脑活动中普遍观察到时间不规则的动作电位或尖峰。然而,这种时间不规则性在神经计算中的作用仍未得到很好的理解。在典型的网络模型中,不规则尖峰通过平衡、波动的输入电流出现,导致集体响应线性地跟踪输入。以不规则尖峰为特征的网络如何支持通用计算所需的灵活非线性动力学仍在持续争论中。在这里,我们描述了一种网络的动力学,其基本单元不是单个神经元,而是一小群具有不同调谐的神经元,它们在每个时间步通过胜者全得(WTA)相互作用进行竞争。虽然WTA长期以来一直被认为是大脑中的一种基本功能基元,并且代表了一种强大的计算原语,但这种单元的大型网络如何行为受到的研究较少。我们表明,这些网络与经典的兴奋性 - 抑制性平衡网络一样,表现出一种由混沌波动驱动的状态,其特征是持续的不规则活动类似于真实的皮层尖峰,我们将其解释为分布在几个具有不同调谐的竞争神经群体上的多维平衡。我们为该网络开发了一种平均场理论,该理论展示了由时变输入波动维持的不规则尖峰如何支持灵活的非线性集体动力学。使用该理论,我们预测并验证了网络状态,在这些状态下,仅输入波动就会通过混沌产生的一致泊松样尖峰产生多稳定性、稳定序列生成或复杂的异质发放率动力学——这三种核心动力学原语被认为是依赖记忆的神经计算的基础。因此,WTA单元网络支持一种由不规则尖峰表征的混沌波动驱动状态,这种状态可以为复杂的非线性集体动力学提供动力。这代表了一种新的大脑活动模型,能够同时再现逼真的尖峰序列和适合灵活计算的各种非线性发放率模式,并且可以对其进行训练或拟合数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40b0/12157085/2ddf825cddfd/pcbi.1013081.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验