Suppr超能文献

基于迭代反卷积技术的 fMRI 时间序列中的神经元事件检测。

Neuronal event detection in fMRI time series using iterative deconvolution techniques.

机构信息

Functional MRI laboratory, University of Michigan, MI 48109-2108, USA.

出版信息

Magn Reson Imaging. 2011 Apr;29(3):353-64. doi: 10.1016/j.mri.2010.10.012. Epub 2011 Jan 12.

Abstract

An iterative estimation algorithm for deconvolution of neuronal activity from Blood Oxygen Level Dependent (BOLD) time series data is presented. The algorithm requires knowledge of the hemodynamic impulse response function but does not require knowledge of the stimulation function. The method uses majorization-minimization of a cost function to find an optimal solution to the inverse problem. The cost function includes penalties for the l(1) norm, total variation and negativity. The algorithm is able to identify the occurrence of neuronal activity bursts from BOLD time series accurately. The accuracy of the algorithm was tested in simulations and experimental fMRI data using blocked and event-related designs. The simulations revealed that the algorithm is most sensitive to contrast-to-noise ratio levels and to errors in the assumed hemodynamic model and least sensitive to autocorrelation in the noise. Within normal fMRI conditions, the method is effective for event detection.

摘要

提出了一种从血氧水平依赖(BOLD)时间序列数据中去卷积神经元活动的迭代估计算法。该算法需要知道血流动力学脉冲响应函数的知识,但不需要知道刺激函数的知识。该方法使用成本函数的最大化-最小化来找到逆问题的最优解。成本函数包括对 l(1)范数、总变差和负值的惩罚。该算法能够准确地从 BOLD 时间序列中识别神经元活动爆发的发生。该算法在使用块和事件相关设计的模拟和实验 fMRI 数据中进行了准确性测试。模拟结果表明,该算法对对比噪声比水平、假设血流动力学模型中的误差最为敏感,对噪声中的自相关最不敏感。在正常 fMRI 条件下,该方法对事件检测有效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验