Suppr超能文献

填充 Halo-ES 壳颗粒的柱内传质动力学。

The mass transfer kinetics in columns packed with Halo-ES shell particles.

机构信息

Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600, USA.

出版信息

J Chromatogr A. 2011 Feb 18;1218(7):907-21. doi: 10.1016/j.chroma.2010.12.046. Epub 2010 Dec 24.

Abstract

The average mesopore size of the new Halo-ES-Peptide shell particles is 160 Å, markedly larger than that of the classical Halo shell particles (90 Å). We found that this change causes a considerable decrease of the film mass transfer resistance measured for columns packed with these particles. We analyze data obtained by systematic measurements of the C term of the van Deemter equation for the peptide β-lipotropin (MW = 769 Da), the protein insulin (MW = 5800 Da), and a series of non-retained polystyrene standards (MW = 6400 and 13,200). The improvement in column performance is explained by an increase of the fraction of the external surface area of the shell that allows the entrance of the sample molecules inside the particle. The fraction of the shell surface accessible to a probe controls the rate of its external film mass transfer, i.e. its rate of transfer between the interstitial and the stagnant eluent. Although measurable, the increase in sample diffusivity through the porous shells does not account for the better performance of Halo-ES-peptide columns. Furthermore, the analysis of the HETPs data of small molecules (uracil, acetophenone, toluene, and naphthalene, MW< 150) reveals that the eddy diffusion (A) term of these new columns is 25% lower than that of the classical Halo columns. This result is consistent with the impact of intra-particle diffusivity on the eddy diffusion mechanism in packed columns. As shell diffusivity increases, so does the rate of transfer of sample molecules between the eluent stream-paths flowing through the packed particles and across the column diameter. Dispersion through short-range inter-channel and trans-column eddies is reduced.

摘要

新 Halo-ES-Peptide 壳颗粒的平均中孔尺寸为 160Å,明显大于经典 Halo 壳颗粒(90Å)。我们发现这种变化导致用这些颗粒填充的色谱柱的膜传质阻力显著降低。我们分析了通过对肽β-内啡肽(MW = 769 Da)、蛋白质胰岛素(MW = 5800 Da)和一系列非保留聚苯乙烯标准品(MW = 6400 和 13200)的 van Deemter 方程 C 项的系统测量获得的数据。柱性能的提高可以用壳的外部表面积的分数增加来解释,这允许样品分子进入颗粒内部。探针可到达的壳表面积分数控制其外部膜传质速率,即其在间隙和停滞洗脱剂之间的转移速率。虽然可以测量,但样品通过多孔壳的扩散率的增加并不能解释 Halo-ES-peptide 柱的更好性能。此外,对小分子(尿嘧啶、苯乙酮、甲苯和萘,MW<150)的 HETP 数据的分析表明,这些新柱的涡流扩散(A)项比经典 Halo 柱低 25%。这一结果与颗粒内扩散率对填充柱中涡流扩散机制的影响一致。随着壳扩散率的增加,样品分子在流经填充颗粒的洗脱流路径之间以及跨柱直径的转移速率也会增加。通过短程通道间和跨柱涡流的分散减少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验