Suppr超能文献

改变颗粒结构如何在液相色谱中加速蛋白质质量转移动力学。

How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography.

机构信息

Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600, USA.

出版信息

J Chromatogr A. 2012 Nov 9;1263:84-98. doi: 10.1016/j.chroma.2012.09.030. Epub 2012 Sep 24.

Abstract

The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems to speed up the penetration of proteins into the particles. A stochastic model of the penetration of bulky proteins driven by a concentration gradient across an infinitely thin membrane of known porosity and pore size is suggested to explain this mechanism. Yet, under retained conditions, surface diffusion speeds up the mass transfer into the mesopores and levels the kinetic performance of particles built with either one or two porous shells.

摘要

在非保留条件下,研究了几种化合物(尿嘧啶,112 Da)、胰岛素(5.5 kDa)、溶菌酶(13.4 kDa)和牛血清白蛋白(BSA,67 kDa)在填充有几种类型球形颗粒的柱中的传质动力学,以消除表面扩散对 RPLC 中多孔颗粒中整体样品扩散率的影响。此时,颗粒间的扩散率最小。根据颗粒的可及性和分析物的孔隙率,可以从洗脱时间、内部阻塞因子(使用 Pismen 相关性)和阻碍扩散因子(使用 Renkin 相关性)准确估算出来。所使用的柱子填充有全多孔颗粒 2.5 μm Luna-C(18) 100 Å、核壳颗粒 2.6 μm Kinetex-C(18) 100 Å、3.6 μm Aeris Widepore-C(18) 200 Å 和原型 2.7 μm 核壳颗粒(由两个分别具有 100 和 300 Å 平均孔径的同心多孔壳组成),以及 3.3 μm 无孔二氧化硅颗粒。结果表明,多孔颗粒结构和固液传质阻力对小分子的柱效率几乎没有影响。对于它们来说,柱性能主要取决于涡流弥散(填充均匀性),其次是纵向扩散(沿填充床的有效样品扩散),仅稍微取决于固液传质阻力(样品在颗粒间的扩散)。相比之下,对于蛋白质,这种第三 HETP 贡献,因此多孔颗粒结构,与涡流弥散一起控制柱的动力学性能。观察到蛋白质的传质动力学最快的是填充有核壳颗粒的柱子,这些颗粒要么具有较大的核/颗粒比,要么具有由第二、外部、薄多孔层组成的外壳,该外壳具有大介孔(200-300 Å)和高孔隙率(~=0.5-0.7)。这种外部壳的结构似乎加速了蛋白质进入颗粒。建议采用一种驱动由已知孔隙率和孔径的无限薄膜引起的浓度梯度的大体积蛋白质穿透的随机模型来解释这种机制。然而,在保留条件下,表面扩散加速了进入介孔的传质,并使具有一个或两个多孔壳的颗粒的动力学性能达到平衡。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验