Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
J Chem Phys. 2011 Jan 14;134(2):024522. doi: 10.1063/1.3526744.
The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.
使用第一性原理密度泛函理论计算研究了不同末端终止的碳原子链的储氢能力。与 H(2)在 H 端链上的物理吸附不同,我们表明,每个奇数或偶数个碳链的末端用两个 Li(Na)原子封端可以容纳十个 H(2)分子,具有最佳的室温存储结合能。Li 2p 态与 H(2)σ轨道的杂化有助于 H(2)吸附。然而,H(2)分子在 Na 上的结合机制仅源于带电荷的 Na 原子与 H(2)之间的极化相互作用。有趣的是,由于 Li 2s2p(Na 3s)和 C 2p 态之间的电荷转移,更多的 H(2)分子可以与链末端的碳原子结合。更重要的是,这些孤立的金属封端链的二聚化不会显著影响氢结合能。此外,C(60)富勒烯末端可以有效地稳定单链。对于 Li 涂层的 C(60)-C(n)-C(60)(n = 5,8)上的约 10wt.%的氢吸收,Li(12)C(60)-C(n)-Li(12)C(60)配合物,保持每个 Li 吸附的 H(2)分子的数量,并稳定单个 Li 原子的分散,作为聚合物的构建块比(Li(12)C(60))(2)二聚体更好。这些发现为基于末端 sp 碳链设计基于团簇组装的储氢材料提供了一条新途径。