Suppr超能文献

预测美:艺术中的分形维数和视觉复杂度。

Predicting beauty: fractal dimension and visual complexity in art.

机构信息

Department of Psychology, Aberystwyth University, Aberystwyth, UK.

出版信息

Br J Psychol. 2011 Feb;102(1):49-70. doi: 10.1348/000712610X498958.

Abstract

Visual complexity has been known to be a significant predictor of preference for artistic works for some time. The first study reported here examines the extent to which perceived visual complexity in art can be successfully predicted using automated measures of complexity. Contrary to previous findings the most successful predictor of visual complexity was Gif compression. The second study examined the extent to which fractal dimension could account for judgments of perceived beauty. The fractal dimension measure accounts for more of the variance in judgments of perceived beauty in visual art than measures of visual complexity alone, particularly for abstract and natural images. Results also suggest that when colour is removed from an artistic image observers are unable to make meaningful judgments as to its beauty.

摘要

视觉复杂性一直以来都是影响人们对艺术作品偏好的一个重要因素。本文首先探讨了使用视觉复杂性的自动测量方法来预测艺术作品的视觉复杂性的程度。与之前的研究结果相反,最成功的预测因素是 Gif 压缩。第二项研究则探讨了分形维数在多大程度上可以解释对视觉艺术的感知美的判断。分形维数比单纯的视觉复杂性测量更能解释对视觉艺术的感知美的判断的差异,尤其是对于抽象和自然图像。结果还表明,当从艺术图像中去除颜色时,观察者无法对其美做出有意义的判断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验