Suppr超能文献

预测指数在未经选择的非小细胞肺癌二线和三线治疗中的适用性。

The applicability of a predictive index for second- and third-line treatment of unselected non-small-cell lung cancer patients.

机构信息

Department of Pneumonology, Oncology and Allergology, Medical University, Lublin, Poland.

出版信息

Respiration. 2011;82(4):341-50. doi: 10.1159/000322843. Epub 2011 Jan 18.

Abstract

BACKGROUND

Tyrosine kinase inhibitors of EGFR (TKI-EGFR) induced response in only 10% of Caucasian non-small-cell lung cancer patients in second- or third-line treatment. Independent predictive factors for qualification to TKI-EGFR treatment have not been assessed. In 2008, a prognostic index was reported for patients treated with erlotinib in the BR.21 trial, but its application for real, unselected patients is limited.

OBJECTIVES

Based on clinical and molecular factors of patients treated with erlotinib, we tried to create a predictive index which could be applied in real treatment practice.

METHODS

In a Cox regression model, we established 6 factors which affected overall survival for erlotinib treatment: performance status, erlotinib-induced rash, time from diagnosis to treatment, gender, weight loss and LDH level. We analyzed the risk factors of early progression and survival shorter than 6 months. In addition we included: time from first-line chemotherapy to erlotinib treatment, smoking status, mutation status in EGFR and anemia.

RESULTS

Our model consisted of 10 factors that were assigned points according to HR or χ2 and p value. The score was used to separate patients into 4 risk categories of unfavorable disease course based on 10th, 50th and 90th percentiles: low risk (I), intermediate low risk (II), intermediate high risk (III) and high risk (IV). Survival probability was significantly higher for group I, intermediate for groups II and III, and significantly lower for group IV (χ2 = 49.5, p < 0.0001). Based on the previously reported index we could not qualify our patients for the low risk group.

CONCLUSIONS

Our model could be useful for qualification for erlotinib treatment of patients with numerous adverse factors and limited access to genetic examination.

摘要

背景

表皮生长因子受体酪氨酸激酶抑制剂(TKI-EGFR)在二线或三线治疗中仅使 10%的高加索非小细胞肺癌患者产生应答。尚未评估有资格接受 TKI-EGFR 治疗的独立预测因素。2008 年,BR.21 试验报告了一项针对接受厄洛替尼治疗的患者的预后指数,但该指数在真实、未经选择的患者中的应用受到限制。

目的

基于接受厄洛替尼治疗的患者的临床和分子因素,我们试图创建一个可应用于真实治疗实践的预测指数。

方法

在 Cox 回归模型中,我们建立了 6 个影响厄洛替尼治疗总生存期的因素:体能状态、厄洛替尼诱导的皮疹、从诊断到治疗的时间、性别、体重减轻和 LDH 水平。我们分析了早期进展和生存期短于 6 个月的风险因素。此外,我们还包括:一线化疗至厄洛替尼治疗的时间、吸烟状况、EGFR 突变状态和贫血。

结果

我们的模型由 10 个根据 HR 或 χ2 值和 p 值分配分数的因素组成。该评分用于根据第 10、第 50 和第 90 百分位数将患者分为 4 个不利疾病过程风险类别:低风险(I)、中低风险(II)、中高风险(III)和高风险(IV)。组 I 的生存概率显著更高,组 II 和 III 的生存概率中等,组 IV 的生存概率显著更低(χ2=49.5,p<0.0001)。根据之前报告的指数,我们的患者无法被归类为低风险组。

结论

我们的模型可用于有大量不利因素且基因检测受限的患者接受厄洛替尼治疗的资格评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验