Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, HCI E 125, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland.
Chemistry. 2011 Jan 24;17(4):1137-47. doi: 10.1002/chem.201002589. Epub 2011 Jan 5.
The role of pore-directing agents (PDAs) in the introduction of hierarchical porosity in silicalite-1 in alkaline medium was investigated. By incorporation of various PDAs in aqueous NaOH, homogenously distributed mesopores were introduced in 2.5 μm silicalite-1 crystals. It was proven for the first time that framework aluminum is not a prerequisite for the introduction of intracrystalline mesoporosity by desilication. The pore-directing role is not directly exerted by framework trivalent cations metals, but by species on the external surface of the zeolite. The inclusion of metal complexes (Al(OH)(4)(-), Ga(OH)(4)(-)) and tetraalkyl ammonium cations (tetramethyl ammonium (TMA(+)), tetrapropyl ammonium (TPA(+))) in the alkaline solution led to distinct mesopore surface areas (up to 286 m(2) g(-1)) and pore sizes centered in the range of 5-20 nm. In the case alkaline treatment was performed in the presence of Al(OH)(4)(-), all aluminum partially integrated in the zeolite giving rise to both Lewis and Brønsted acidity. Apart from the concentration and location, the affinity of the PDA to the zeolite surface plays a crucial role in the pore formation process. If the PDA is attracted too strongly (e.g., TMA(+)), the dissolution is reduced dramatically. When the pore-directing agent is not attracted to the zeolite's external surface, excessive dissolution occurs (standard alkaline treatment). TPA(+) proved to be the most effective PDA as its presence led to high mesopore surface areas (>200 m(2) g(-1)) over a broad range of PDA concentrations (0.003-0.1 M). Importantly, our results enable to extend the suitability of desilication for controlled mesopore formation to all-silica zeolites.
在碱性介质中引入硅线石-1 中的分级孔隙度时,研究了孔导向剂(PDA)的作用。通过将各种 PDA 掺入水性 NaOH 中,在 2.5μm 的硅线石-1 晶体中引入了均匀分布的介孔。首次证明,脱硅过程中,骨架铝并不是引入晶体中介孔的必要条件。孔导向作用不是由骨架三价阳离子金属直接发挥的,而是由沸石外表面的物种发挥的。将金属配合物(Al(OH)(4)(-)、Ga(OH)(4)(-))和四烷基铵阳离子(四甲基铵(TMA(+))、四丙基铵(TPA(+)))包含在碱性溶液中,导致介孔表面积明显增加(高达 286 m(2) g(-1)),孔径集中在 5-20nm 范围内。在碱性处理存在 Al(OH)(4)(-)的情况下,所有铝部分整合到沸石中,导致路易斯和布朗斯台德酸度。除了浓度和位置外,PDA 对沸石表面的亲和力在孔形成过程中起着至关重要的作用。如果 PDA 被强烈吸引(例如,TMA(+)),则溶解会急剧减少。当 PDA 对沸石的外表面没有吸引力时,会发生过度溶解(标准碱性处理)。TPA(+)被证明是最有效的 PDA,因为其存在导致在较宽的 PDA 浓度范围内(0.003-0.1M)具有较高的介孔表面积(>200 m(2) g(-1))。重要的是,我们的结果使脱硅法适用于控制介孔形成扩展到所有硅沸石。