Ascoli M, Puett D
J Biol Chem. 1978 Nov 10;253(21):7832-8.
A previous report from this laboratory showed that binding of iodine-labeled human choriogonadotropin to Leydig tumor cells is not a reversible process (Ascoli, M., and Puett, D. (1978) J. Biol. Chem. 253, 4892--4899). Most of the cell-bound hormone was found to be degraded to 3'-monoiodotyrosine before being released from the cells, and the degradation process could be inhibited by the lysosomotropic agents NH4Cl, chloroquine, and Triton WR-1339. It is reported herein that the degradation of receptor-bound human choriogonadotropin is an energy-dependent process, which can be inhibited by compounds that interfere with glycolysis or oxidative phosphorylation (e.g. NaF, NaN3, NaCN, and 2-deoxyglucose). Hormone degradation is also inhibited by some protease inhibitors such as the chloromethyl ketones of lysine and phenylalanine, but not by specific trypsin inhibitors (e.g. p-aminobenzamidine and p-tosyl-L-arginine methyl ester). With the exception of NH4Cl, it was found that the compounds which inhibit hormone degradation also inhibit hormone-stimulated steroidogenesis. However, the present results involving dose dependency, and those given in the following paper (Ascoli, M. (1978) J. Biol. Chem. 253, 7839--7843), indicate that these two phenomena are not related.