Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, D-12489 Berlin, Germany.
J Phys Chem B. 2011 May 12;115(18):5484-92. doi: 10.1021/jp110561d. Epub 2011 Jan 18.
N-H stretching vibrations of hydrogen-bonded guanosine-cytidine (G·C) base pairs in chloroform solution are studied with linear and ultrafast nonlinear infrared (IR) spectroscopy. Assignment of the IR-active bands in the linear spectrum is made possible by combining structural information on the hydrogen bonds in G·C base pairs with literature results of density functional theory calculations, and empirical relations connecting frequency shifts and intensity of the IR-active vibrations. A local mode representation of N-H stretching vibrations is adopted, consisting of ν(G)(NH(2))(f) and ν(C)(NH(2))(f) modes for free NH groups of G and C, and of ν(G)(NH(2))(b), ν(G)(NH), and ν(C)(NH(2))(b) modes associated with N-H stretching motions of hydrogen-bonded NH groups. The couplings and relaxation dynamics of the N-H stretching excitations are studied with femtosecond mid-infrared two-dimensional (2D) and pump-probe spectroscopy. The N-H stretching vibrations of the free NH groups of G and C have an average population lifetime of 2.4 ps. Besides a vibrational population lifetime shortening to subpicosecond values observed for the hydrogen-bonded N-H stretching vibrations, the 2D spectra reveal vibrational excitation transfer from the ν(G)(NH(2))(b) mode to the ν(G)(NH) and/or ν(C)(NH(2))(b) modes. The underlying intermode vibrational couplings are on the order of 10 cm(-1).
在氯仿溶液中,通过线性和超快非线性红外(IR)光谱研究了氢键鸟嘌呤-胞嘧啶(G·C)碱基对的 N-H 伸缩振动。通过将 G·C 碱基对中氢键的结构信息与密度泛函理论计算的文献结果相结合,并结合频率位移和 IR 活性振动强度的经验关系,使得对线性光谱中 IR 活性带的分配成为可能。采用 N-H 伸缩振动的局部模式表示,由 G 和 C 的游离 NH 基团的 ν(G)(NH(2))(f)和 ν(C)(NH(2))(f)模式以及与氢键 NH 基团的 N-H 伸缩运动相关的 ν(G)(NH(2))(b)、ν(G)(NH)和 ν(C)(NH(2))(b)模式组成。通过飞秒中红外二维(2D)和泵浦探测光谱研究了 N-H 伸缩激发的耦合和弛豫动力学。G 和 C 的游离 NH 基团的 N-H 伸缩振动的平均布居寿命为 2.4 ps。除了观察到氢键 N-H 伸缩振动的振动布居寿命缩短到亚皮秒值之外,2D 光谱还揭示了从 ν(G)(NH(2))(b)模式到 ν(G)(NH)和/或 ν(C)(NH(2))(b)模式的振动激发转移。潜在的模态间振动耦合约为 10 cm(-1)。