Suppr超能文献

高效实现空间变化三维超声反卷积。

Efficient implementation of spatially-varying 3-D ultrasound deconvolution.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jan;58(1):234-8. doi: 10.1109/TUFFC.2011.1790.

Abstract

There are sometimes occasions when ultrasound beamforming is performed with only a subset of the total data that will eventually be available. The most obvious example is a mechanically-swept (wobbler) probe in which the three-dimensional data block is formed from a set of individual B-scans. In these circumstances, non-blind deconvolution can be used to improve the resolution of the data. Unfortunately, most of these situations involve large blocks of three-dimensional data. Furthermore, the ultrasound blur function varies spatially with distance from the transducer. These two facts make the deconvolution process time-consuming to implement. This paper is about ways to address this problem and produce spatially-varying deconvolution of large blocks of three-dimensional data in a matter of seconds. We present two approaches, one based on hardware and the other based on software. We compare the time they each take to achieve similar results and discuss the computational resources and form of blur model that each requires.

摘要

有时,超声成像是在最终可用的总数据的子集上进行的。最明显的例子是机械扫描(摆动)探头,其中三维数据块由一组单独的 B 扫描形成。在这些情况下,可以使用非盲反卷积来提高数据的分辨率。不幸的是,大多数这些情况都涉及到大量的三维数据块。此外,超声模糊函数随距离换能器的空间变化。这两个事实使得反卷积过程的实现非常耗时。本文介绍了一些解决这个问题的方法,可以在几秒钟内对大块三维数据进行空间变化的反卷积。我们提出了两种方法,一种基于硬件,另一种基于软件。我们比较了它们各自实现相似结果所需的时间,并讨论了它们各自所需的计算资源和模糊模型的形式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验