Suppr超能文献

基于体素的个体亚型预测可区分进行性核上性麻痹与特发性帕金森综合征和健康对照。

Individual voxel-based subtype prediction can differentiate progressive supranuclear palsy from idiopathic Parkinson syndrome and healthy controls.

机构信息

Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany.

出版信息

Hum Brain Mapp. 2011 Nov;32(11):1905-15. doi: 10.1002/hbm.21161. Epub 2011 Jan 18.

Abstract

Voxel-based morphometry (VBM) shows a differentiated pattern in patients with atypical Parkinson syndrome but so far has had little impact in individual cases. It is desirable to translate VBM findings into clinical practice and individual classification. To this end, we examined whether a support vector machine (SVM) can provide useful accuracies for the differential diagnosis. We acquired a volumetric 3D T1-weighted MRI of 21 patients with idiopathic Parkinson syndrome (IPS), 11 multiple systems atrophy (MSA-P) and 10 progressive supranuclear palsy (PSP), and 22 healthy controls. Images were segmented, normalized, and compared at group level with SPM8 in a classical VBM design. Next, a SVM analysis was performed on an individual basis with leave-one-out cross-validation. VBM showed a strong white matter loss in the mesencephalon of patients with PSP, a putaminal grey matter loss in MSA, and a cerebellar grey matter loss in patients with PSP compared with IPS. The SVM allowed for an individual classification in PSP versus IPS with up to 96.8% accuracy with 90% sensitivity and 100% specificity. In MSA versus IPS, an accuracy of 71.9% was achieved; sensitivity, however, was low with 36.4%. Patients with IPS could not be differentiated from controls. In summary, a voxel-based SVM analysis allows for a reliable classification of individual cases in PSP that can be directly clinically useful. For patients with MSA and IPS, further developments like quantitative MRI are needed.

摘要

基于体素的形态计量学(VBM)在非典型帕金森综合征患者中显示出不同的模式,但到目前为止,它在个体病例中的影响还很小。将 VBM 发现转化为临床实践和个体分类是很理想的。为此,我们研究了支持向量机(SVM)是否可以为鉴别诊断提供有用的准确性。我们获得了 21 名特发性帕金森综合征(IPS)患者、11 名多系统萎缩(MSA-P)患者和 10 名进行性核上性麻痹(PSP)患者以及 22 名健康对照者的容积 3D T1 加权 MRI。使用 SPM8 在经典 VBM 设计中对图像进行分割、归一化并在组水平上进行比较。然后,在个体基础上进行 SVM 分析,并进行了一次留一交叉验证。VBM 显示 PSP 患者的中脑白质有明显丢失,MSA 患者的壳核灰质有丢失,PSP 患者的小脑灰质有丢失,而 IPS 患者则没有。SVM 允许对 PSP 与 IPS 进行个体分类,准确率高达 96.8%,敏感度为 90%,特异性为 100%。在 MSA 与 IPS 之间,准确率为 71.9%;然而,敏感性较低,为 36.4%。IPS 患者不能与对照组区分开来。总之,基于体素的 SVM 分析可以可靠地对 PSP 的个体病例进行分类,这在临床上可能直接有用。对于 MSA 和 IPS 患者,需要进一步开发如定量 MRI 等方法。

相似文献

4
Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and Progressive Supranuclear Palsy.
J Neurosci Methods. 2014 Jan 30;222:230-7. doi: 10.1016/j.jneumeth.2013.11.016. Epub 2013 Nov 26.
5
New and reliable MRI diagnosis for progressive supranuclear palsy.
Neurology. 2005 Jun 28;64(12):2050-5. doi: 10.1212/01.WNL.0000165960.04422.D0.
9
Diagnostic potential of automated subcortical volume segmentation in atypical parkinsonism.
Neurology. 2016 Mar 29;86(13):1242-9. doi: 10.1212/WNL.0000000000002518. Epub 2016 Mar 2.
10
Morphometry MRI in the differential diagnosis of parkinsonian syndromes.
Arq Neuropsiquiatr. 2010 Jun;68(3):333-8. doi: 10.1590/s0004-282x2010000300001.

引用本文的文献

1
Brainstem and cerebellar radiological findings in progressive supranuclear palsy.
Brain Commun. 2025 Feb 5;7(1):fcaf051. doi: 10.1093/braincomms/fcaf051. eCollection 2025.
2
Gray matter, white matter and cerebrospinal fluid abnormalities in Parkinson's disease: A voxel-based morphometry study.
Front Psychiatry. 2022 Oct 17;13:1027907. doi: 10.3389/fpsyt.2022.1027907. eCollection 2022.
5
Machine Learning for the Diagnosis of Parkinson's Disease: A Review of Literature.
Front Aging Neurosci. 2021 May 6;13:633752. doi: 10.3389/fnagi.2021.633752. eCollection 2021.
6
Utility of Multi-Modal MRI for Differentiating of Parkinson's Disease and Progressive Supranuclear Palsy Using Machine Learning.
Front Neurol. 2021 Apr 14;12:648548. doi: 10.3389/fneur.2021.648548. eCollection 2021.
7
Multivariate radiomics models based on F-FDG hybrid PET/MRI for distinguishing between Parkinson's disease and multiple system atrophy.
Eur J Nucl Med Mol Imaging. 2021 Oct;48(11):3469-3481. doi: 10.1007/s00259-021-05325-z. Epub 2021 Apr 7.
10
Brain morphological changes in hypokinetic dysarthria of Parkinson's disease and use of machine learning to predict severity.
CNS Neurosci Ther. 2020 Jul;26(7):711-719. doi: 10.1111/cns.13304. Epub 2020 Mar 20.

本文引用的文献

1
A validation exercise on the new consensus criteria for multiple system atrophy.
Mov Disord. 2009 Nov 15;24(15):2272-6. doi: 10.1002/mds.22826.
2
Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach.
Neuroimage. 2010 Jan 1;49(1):44-56. doi: 10.1016/j.neuroimage.2009.08.024. Epub 2009 Aug 14.
3
Temporal lobe changes in early, untreated Parkinson's disease.
Mov Disord. 2009 Oct 15;24(13):1949-54. doi: 10.1002/mds.22680.
4
MRI characteristics of the substantia nigra in Parkinson's disease: a combined quantitative T1 and DTI study.
Neuroimage. 2009 Aug 15;47(2):435-41. doi: 10.1016/j.neuroimage.2009.05.017. Epub 2009 May 15.
6
Improved segmentation of deep brain grey matter structures using magnetization transfer (MT) parameter maps.
Neuroimage. 2009 Aug 1;47(1):194-8. doi: 10.1016/j.neuroimage.2009.03.053. Epub 2009 Mar 31.
7
Automatic detection of preclinical neurodegeneration: presymptomatic Huntington disease.
Neurology. 2009 Feb 3;72(5):426-31. doi: 10.1212/01.wnl.0000341768.28646.b6.
8
High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease.
Neurology. 2009 Apr 21;72(16):1378-84. doi: 10.1212/01.wnl.0000340982.01727.6e. Epub 2009 Jan 7.
9
10
Transcranial sonography in movement disorders.
Lancet Neurol. 2008 Nov;7(11):1044-55. doi: 10.1016/S1474-4422(08)70239-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验