Suppr超能文献

改进的铌酸盐纳米卷用于部分水分解的光催化剂。

Improved niobate nanoscroll photocatalysts for partial water splitting.

机构信息

Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.

出版信息

ChemSusChem. 2011 Feb 18;4(2):185-90. doi: 10.1002/cssc.201000377. Epub 2011 Jan 18.

Abstract

Layered K(4)Nb(6)O(17) is a known UV-light-driven photocatalyst for overall water splitting, with a band gap of 3.5 eV. Following ion exchange and exfoliation with tetrabutylammonium hydroxide, the layered material separates into nanosheets that coil into 1.0±0.5 μm long and 10±5 nm wide nanoscrolls to reduce their surface energy. Pt and IrO(x) (x=1.5-2) nanoparticles were photochemically deposited onto the surface of the nanoscrolls to produce two- and three-component photocatalysts. Under UV irradiation, the nanostructures produced H(2) from pure water and aqueous methanol, with turnover numbers ranging from 2.3 and 18.5 over a 5 h period. The activity of the catalysts for H(2) evolution can be directly correlated with the varying overpotentials for water reduction (210-325 mV). From water, no oxygen is evolved. Instead, the formation of surface-bound peroxides in a 1:1 stoichiometry with H(2) is observed. Slow photochemical oxygen evolution can be achieved with the sacrificial electron acceptor AgNO(3), and under an electrochemical bias. The electrochemical water oxidation overpotentials are ca. 600 mV across the series of scrolls. From the photo onset potential the conduction band edge for the unmodified scrolls is estimated as -0.75 V at pH 7. Deposition of a co-catalyst is found to depress this value by 58 mV (IrO(x)), 148 mV (Pt/IrO(x)), and 242 mV (Pt). However, because water oxidation remains rate-limiting, this does not affect the overall performance of the catalysts.

摘要

层状 K(4)Nb(6)O(17)是一种已知的用于整体水分解的紫外光驱动光催化剂,带隙为 3.5 eV。通过与四丁基氢氧化铵进行离子交换和剥离,层状材料分离成纳米片,纳米片卷曲成 1.0±0.5 μm 长和 10±5 nm 宽的纳米卷,以降低其表面能。Pt 和 IrO(x)(x=1.5-2)纳米颗粒通过光化学沉积在纳米卷的表面上,制备了二组分和三组分光催化剂。在紫外光照射下,这些纳米结构从纯水和甲醇水溶液中产生 H(2),在 5 h 的时间内,周转率范围为 2.3 至 18.5。催化剂对 H(2)演化的活性可以直接与水还原的过电势(210-325 mV)相关联。从水中,没有氧气产生。相反,观察到与 H(2)以 1:1 化学计量比结合的表面结合过氧化物的形成。通过牺牲电子受体 AgNO(3)可以实现缓慢的光化学氧气演化,并且在电化学偏压下也可以实现。在整个纳米卷系列中,电化学水氧化的过电势约为 600 mV。从光起始电位来看,未经修饰的纳米卷的导带边缘在 pH 7 时估计为-0.75 V。发现共催化剂的沉积会使该值降低 58 mV(IrO(x))、148 mV(Pt/IrO(x))和 242 mV(Pt)。然而,由于水氧化仍然是限速步骤,因此这不会影响催化剂的整体性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验